Piercing intersecting convex sets

被引:0
|
作者
Barany, Imre [1 ,2 ]
Dillon, Travis [3 ]
Palvolgyi, Domotor [1 ,4 ]
Varga, Daniel [1 ]
机构
[1] HUN REN Alfred Reny Inst Math, 13 Realtanoda St, H-1053 Budapest, Hungary
[2] UCL, Dept Math, Gower St, London WC1E 6BT, England
[3] MIT, 77 Massachusetts Ave, Cambridge, MA USA
[4] Eotvos Lorand Univ, Budapest, Hungary
基金
芬兰科学院; 欧洲研究理事会; 美国国家科学基金会;
关键词
Helly-type theorems; Line transversals; Linear programming;
D O I
10.1016/j.laa.2025.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume two finite families A and B of convex sets in R-3 have the property that A boolean AND B not equal & empty; for every A is an element of A and B is an element of B. Is there a constant gamma > 0 (independent of A and B) such that there is a line intersecting gamma|A| sets in A or gamma|B|sets in B? This is an intriguing Helly-type question from a paper by Martinez, Roldan and Rubin. We confirm this in the special case when all sets in A lie in parallel planes and all sets in B lie in parallel planes; in fact, one of the two families has a transversal by a single line. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:405 / 417
页数:13
相关论文
共 50 条
  • [21] Intersecting and cross-intersecting families of labeled sets
    Borg, Peter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [22] Piercing Translates and Homothets of a Convex Body
    Adrian Dumitrescu
    Minghui Jiang
    Algorithmica, 2011, 61 : 94 - 115
  • [23] Piercing Translates and Homothets of a Convex Body
    Dumitrescu, Adrian
    Jiang, Minghui
    ALGORITHMS - ESA 2009, PROCEEDINGS, 2009, 5757 : 131 - +
  • [24] ALMOST INTERSECTING FAMILIES OF SETS
    Gerbner, Daniel
    Lemons, Nathan
    Palmer, Cory
    Patkos, Balazs
    Szecsi, Vajk
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (04) : 1657 - 1669
  • [25] Piercing Translates and Homothets of a Convex Body
    Dumitrescu, Adrian
    Jiang, Minghui
    ALGORITHMICA, 2011, 61 (01) : 94 - 115
  • [26] Intersecting families of separated sets
    Talbot, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 : 37 - 51
  • [27] Multiply intersecting families of sets
    Füredi, Z
    Katona, Z
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 106 (02) : 315 - 326
  • [28] Intersecting systems of signed sets
    Borg, Peter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [29] FAMILIES OF SETS WITH INTERSECTING CLUSTERS
    Chen, William Y. C.
    Liu, Jiuqiang
    Wang, Larry X. W.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1249 - 1260
  • [30] UpSet: Visualization of Intersecting Sets
    Lex, Alexander
    Gehlenborg, Nils
    Strobelt, Hendrik
    Vuillemot, Romain
    Pfister, Hanspeter
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) : 1983 - 1992