Phase-matching-free second-harmonic generation in an ultrahigh-order standing-wave field

被引:1
|
作者
Wei, Qiheng [1 ,2 ]
Shan, Hongrui [1 ,3 ,4 ]
Dai, Hailang [1 ]
Chen, Xianfeng [1 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[2] China Acad Engn Phys, Inst Fluid Phys, Mianyang 621900, Sichuan, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Res Ctr Precis Sensing & Control, Beijing 100190, Peoples R China
[4] Luoyang Inst Robot & Intelligent Equipment, Luoyang 471000, Peoples R China
[5] Shandong Normal Univ, Collaborat Innovat Ctr Light Manipulat & Applicat, Sch Phys & Elect, Jinan 250358, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 05期
基金
中国国家自然科学基金;
关键词
SILICON; LIGHT; BEAM;
D O I
10.1103/PhysRevApplied.22.L051001
中图分类号
O59 [应用物理学];
学科分类号
摘要
In nonlinear wavelength conversion processes, maintaining phase matching is crucial to ensuring the conservation of photon momentum. Consequently, the requirement for phase matching limits the effectiveness of all parametric nonlinear optical processes. Techniques such as quasi-phase-matching, birefringent phase matching, and higher-order-mode phase matching have been developed to address this limitation. However, these methods necessitate specific beam arrangements and precise dispersion engineering, and are typically narrowband. In this study, we demonstrate that a submillimeter metal-clad waveguide can bypass the phase-matching requirement for on-chip nonlinear wavelength conversion by exciting an ultrahigh-order standing-wave field at nonspecial matching incident angles. Additionally, efficient secondharmonic generation is observed within the submillimeter waveguide across a broad range of pump wavelengths (from visible to infrared). The results indicate that the ultrahigh-order standing-wave field mitigates traditional phase-matching constraints, facilitating nonlinear interactions and the miniaturization of nonlinear devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Phase-matching with a twist: Second-harmonic generation in birefringent periodically poled fibers
    Zhu, E. Y.
    Qian, L.
    Helt, L. G.
    Liscidini, M.
    Sipe, J. E.
    Corbari, C.
    Canagasabey, A.
    Ibsen, M.
    Kazansky, P. G.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (11) : 2410 - 2415
  • [32] Effect of the pump depletion itself on the quasi-phase-matching for second-harmonic generation
    Zhao, Li-Ming
    Yue, Gui-Kuan
    Zhou, Yun-Song
    EPL, 2012, 99 (03)
  • [33] High-order harmonic generation by atoms with traveling- and standing-wave pumps of relativistic intensity
    Taranukhin, VD
    Shubin, NY
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (05) : 1132 - 1140
  • [34] Anapoles in Free-Standing III-V Nanodisks Enhancing Second-Harmonic Generation
    Timofeeva, Maria
    Lang, Lukas
    Timpu, Flavia
    Renaut, Claude
    Bouravleuv, Alexei
    Shtrom, Igor
    Cirlin, George
    Grange, Rachel
    NANO LETTERS, 2018, 18 (06) : 3695 - 3702
  • [35] EFFECT OF GAUSSIAN BEAM SPREAD ON PHASE VELOCITY MATCHING IN CW OPTICAL SECOND-HARMONIC GENERATION
    FRANCOIS, GE
    SIEGMAN, AE
    PHYSICAL REVIEW, 1965, 139 (1A): : A4 - &
  • [36] Group-velocity-matched noncollinear second-harmonic generation in quasi-phase matching
    Fujioka, N
    Ashihara, S
    Ono, H
    Shimura, T
    Kuroda, K
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (06) : 1283 - 1289
  • [37] Femtosecond pulse synthesis by efficient second-harmonic generation in engineered quasi phase matching gratings
    Sapaev, Usman K.
    Assanto, Gaetano
    OPTICS EXPRESS, 2007, 15 (12): : 7448 - 7457
  • [38] Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings
    Arbore, MA
    Marco, O
    Fejer, MM
    OPTICS LETTERS, 1997, 22 (12) : 865 - 867
  • [39] Integrated Backward Second-Harmonic Generation through Optically Induced Quasi-Phase-Matching
    Yakar O.
    Nitiss E.
    Hu J.
    Brès C.-S.
    Physical Review Letters, 2023, 131 (14)