FedDSS: A data-similarity approach for client selection in horizontal federated learning

被引:0
|
作者
Nguyen, Tuong Minh [1 ]
Poh, Kim Leng [1 ]
Chong, Shu-Ling [2 ]
Lee, Jan Hau [3 ,4 ]
机构
[1] Natl Univ Singapore, Dept Ind Syst Engn & Management, Singapore 117576, Singapore
[2] KK Womens & Childrens Hosp, Childrens Emergency, Singapore 229899, Singapore
[3] Duke NUS Med Sch, SingHlth Duke NUS Paediat Acad Clin Programme, Singapore 169857, Singapore
[4] KK Womens & Childrens Hosp, Childrens Intens Care Unit, Singapore 229899, Singapore
关键词
Federated learning; Non-i.i.d; Client selection; Data similarity; Pediatric sepsis;
D O I
10.1016/j.ijmedinf.2024.105650
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background and objective: Federated learning (FL) is an emerging distributed learning framework allowing multiple clients (hospitals, institutions, smart devices, etc.) to collaboratively train a centralized machine learning model without disclosing personal data. It has the potential to address several healthcare challenges, including a lack of training data, data privacy, and security concerns. However, model learning under FL is affected by non-i.i.d. data, leading to severe model divergence and reduced performance due to the varying client's data distributions. To address this problem, we propose FedDSS, Federated Data Similarity Selection, a framework that uses a data-similarity approach to select clients, without compromising client data privacy. Methods: FedDSS comprises a statistical-based data similarity metric, a N-similar-neighbor network, and a network-based selection strategy. We assessed FedDSS' performance against FedAvg's in i.i.d. and non-i.i.d. settings with two public pediatric sepsis datasets (PICD and MIMICIII). Selection fairness was measured using entropy. . Simulations were repeated five times to evaluate average loss, true positive rate (TPR), and entropy. . Results: In i.i.d setting on PICD, FedDSS achieved a higher TPR starting from the 9th round and surpassing 0.6 three rounds earlier than FedAvg. On MIMICIII, FedDSS's loss decreases significantly from the 13th round, with TPR > 0.8 by the 2nd round, two rounds ahead of FedAvg (at the 4th round). In the non-i.i.d. setting, FedDSS achieved TPR > 0.7 by the 4th and > 0.8 by the 7th round, earlier than FedAvg (at the 5th and 11th rounds). In both settings, FedDSS showed reasonable fairness ( entropy of 2.2 and 2.1). Conclusion: We demonstrated that FedDSS contributes to improved learning in FL by achieving faster convergence, reaching the desired TPR with fewer communication rounds, and potentially enhancing sepsis prediction (TPR) over FedAvg.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Client Selection With Staleness Compensation in Asynchronous Federated Learning
    Zhu, Hongbin
    Kuang, Junqian
    Yang, Miao
    Qian, Hua
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (03) : 4124 - 4129
  • [32] The Role of SDN to Improve Client Selection in Federated Learning
    Mahmod, Ahmad
    Pace, Pasquale
    Iera, Antonio
    IEEE COMMUNICATIONS MAGAZINE, 2025, 63 (03) : 212 - 218
  • [33] Maverick Matters: Client Contribution and Selection in Federated Learning
    Huang, Jiyue
    Hong, Chi
    Liu, Yang
    Chen, Lydia Y.
    Roos, Stefanie
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT II, 2023, 13936 : 269 - 282
  • [34] An Incentive Auction for Heterogeneous Client Selection in Federated Learning
    Pang, Jinlong
    Yu, Jieling
    Zhou, Ruiting
    Lui, John C. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 5733 - 5750
  • [35] A comprehensive survey on client selection strategies in federated learning
    Li, Jian
    Chen, Tongbao
    Teng, Shaohua
    COMPUTER NETWORKS, 2024, 251
  • [36] A Systematic Literature Review on Client Selection in Federated Learning
    Smestad, Carl
    Li, Jingyue
    27TH INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2023, 2023, : 2 - 11
  • [37] Client Selection for Asynchronous Federated Learning with Fairness Consideration
    Zhu, Hongbin
    Yang, Miao
    Kuang, Junqian
    Qian, Hua
    Zhou, Yong
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 800 - 805
  • [38] Towards Understanding Biased Client Selection in Federated Learning
    Cho, Yae Jee
    Wang, Jianyu
    Joshi, Gauri
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [39] Asynchronous Wireless Federated Learning With Probabilistic Client Selection
    Yang, Jiarong
    Liu, Yuan
    Chen, Fangjiong
    Chen, Wen
    Li, Changle
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7144 - 7158
  • [40] Client Selection in Federated Learning under Imperfections in Environment
    Rai, Sumit
    Kumari, Arti
    Prasad, Dilip K.
    AI, 2022, 3 (01) : 124 - 145