A Cascaded Network for Surface Defect Detection on Lead Frames in Production Lines

被引:0
|
作者
Xu, Zhen [1 ]
Zhao, Weidong [1 ]
Jia, Ning [1 ]
Liu, Xianhui [1 ]
Wei, Mingyue [1 ]
机构
[1] Tongji Univ, Coll Elect & Informat Engn, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Lead; Feature extraction; Defect detection; Production; Surface treatment; Surface morphology; Manuals; Surface contamination; Inspection; Convolution; Deep learning; lead frame; machine vision; minute target; surface defect detection; SYSTEM;
D O I
10.1109/TIM.2024.3476614
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conducting surface defect detection on lead frames is a crucial operation in semiconductor manufacturing that significantly impacts product quality. This study develops a lead frame dataset and introduces a novel network tailored to detect minute target defects on lead frame surfaces across the production process. Initially, this study proposes a learnable hierarchical graph network (LHGNet) for effective feature extraction of small target defects, using learnable dynamic convolution modules for targeted feature extraction. Subsequently, this study introduces multiattention-based high-level screening-feature pyramid networks (MHS-FPN) and mixed cascade grouped attention (MCGA) modules, which enhance the feature expression of small targets while improving model classification performance. In addition, a loss function is specifically tailored for the lead frame scenario. Using the lead frame dataset and comparing it with competing methods, the feasibility and effectiveness of this model in detecting surface defects on lead frames in production lines are validated. The proposed surface defect detection you only look once (SDD-YOLO) network achieves a mean average precision (mAP) of 87.9% and an overall missed detection rate (OMD) of 2.06%, demonstrating its capability to either replace or assist manual inspections in assessing product quality.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] An Automatic Surface Defect Detection Method with Residual Attention Network
    Yang, Lei
    Bai, Suli
    Huang, Hanyun
    Kong, Shuyi
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT II, 2022, 13605 : 194 - 205
  • [22] A deep convolutional neural network for detection of rail surface defect
    Yuan, Hao
    Chen, Hao
    Liu, ShiWang
    Lin, Jun
    Luo, Xiao
    2019 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2019,
  • [23] DEFECT ROOT CAUSE ANALYSIS IN PRODUCTION LINES BASED ON HIERARCHICAL BAYSIAN NETWORK
    Noursadeghi, Elaheh
    Kamani, Parisa
    Afshar, Ahmad
    2011 INTERNATIONAL CONFERENCE ON COMPUTER AND COMPUTATIONAL INTELLIGENCE (ICCCI 2011), 2012, : 13 - 18
  • [24] Deep Regression Neural Network for Industrial Surface Defect Detection
    He, Zhiquan
    Liu, Qifan
    IEEE ACCESS, 2020, 8 : 35583 - 35591
  • [25] Binary Neural Network for Automated Visual Surface Defect Detection
    Liu, Wenzhe
    Zhang, Jiehua
    Su, Zhuo
    Zhou, Zhongzhu
    Liu, Li
    SENSORS, 2021, 21 (20)
  • [26] An Improved Target Network Model for Rail Surface Defect Detection
    Zhang, Ye
    Feng, Tianshi
    Song, Yating
    Shi, Yuhang
    Cai, Guoqiang
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [27] Adaptive convolutional neural network for aluminum surface defect detection
    Wang, Yu
    Wei, Yun-Sheng
    Wu, Zhi-Ze
    He, Zhi-Huang
    Wang, Kai
    Ding, Ze-Sheng
    Zou, Le
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 227
  • [28] RoIA: Region of Interest Attention Network for Surface Defect Detection
    Liu, Taiheng
    Cao, Guang-Zhong
    He, Zhaoshui
    Xie, Shengli
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2023, 36 (02) : 159 - 169
  • [29] Electronic Product Surface Defect Detection Based on a MSSD Network
    Li, Yong
    Xu, Jinbing
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 773 - 777
  • [30] Cascading Convolutional Neural Network for Steel Surface Defect Detection
    Lin, Chih-Yang
    Chen, Cheng-Hsun
    Yang, Ching-Yuan
    Akhyar, Fityanul
    Hsu, Chao-Yung
    Ng, Hui-Fuang
    ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING, 2020, 965 : 202 - 212