Co-training of multiple neural networks for simultaneous optimization and training of physics-informed neural networks for composite curing☆

被引:0
|
作者
Humfeld, Keith D. [1 ]
Kim, Geun Young [2 ]
Jeon, Ji Ho [3 ]
Hoffman, John [4 ]
Brown, Allison [1 ]
Colton, Jonathan [2 ]
Melkote, Shreyes [2 ]
Nguyen, Vinh [4 ]
机构
[1] Boeing Co, Chicago, IL USA
[2] Georgia Inst Technol, Atlanta, GA USA
[3] Univ Connecticut, Storrs, CT USA
[4] Michigan Technol Univ, Houghton, MI 49931 USA
关键词
Composite curing; Optimization; Out-of-autoclave; Physics-informed neural network; CURE SIMULATION; MODEL; VISCOSITY; KINETICS;
D O I
10.1016/j.compositesa.2025.108820
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces a Physics-Informed Neural Network (PINN) technique that co-trains neural networks (NNs) that represent each function in a system of equations to simultaneously solve equations representing an out-ofautoclave (OOA) cure process while conducting optimization in adherence to process requirements. Specifically, this co-training approach benefits from using NNs to represent OOA inputs (air temperature profile) and outputs (part and tool temperature profiles and degree of cure). Production requirements can then be levied on the inputs, such as maximum air temperature and minimum cure cycle, and simultaneously on the outputs, such as degree of cure, maximum part temperature, and part temperature rate limits. Co-training the NNs results in an optimized input producing outputs that meet all OOA process requirements. The technique is validated with finite element (FE) simulations and physical experiments for curing a Toray T830H-6 K/3900-2D composite panel. Hence, this novel approach efficiently models and optimizes the OOA cure process.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Capturing Power System Dynamics by Physics-Informed Neural Networks and Optimization
    Misyris, Georgios S.
    Stiasny, Jochen
    Chatzivasileiadis, Spyros
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4418 - 4423
  • [42] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30
  • [43] Tackling the curse of dimensionality with physics-informed neural networks
    Hu, Zheyuan
    Shukla, Khemraj
    Karniadakis, George Em
    Kawaguchi, Kenji
    NEURAL NETWORKS, 2024, 176
  • [44] Boussinesq equation solved by the physics-informed neural networks
    Ruozhou Gao
    Wei Hu
    Jinxi Fei
    Hongyu Wu
    Nonlinear Dynamics, 2023, 111 : 15279 - 15291
  • [45] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [46] The application of physics-informed neural networks to hydrodynamic voltammetry
    Chen, Haotian
    Kaetelhoen, Enno
    Compton, Richard G.
    ANALYST, 2022, 147 (09) : 1881 - 1891
  • [47] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [48] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    FRONTIERS IN PHYSICS, 2020, 8
  • [49] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [50] Physics-Informed Neural Networks with Group Contribution Methods
    Babaei, Mohammad Reza
    Stone, Ryan
    Knotts, Thomas Allen
    Hedengren, John
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4163 - 4171