Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis

被引:0
|
作者
Zhou, Huajun [1 ]
Zhou, Fengtao [1 ]
Chen, Hao [2 ,3 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Div Life Sci, Hong Kong, Peoples R China
关键词
Cancer; Genomics; Bioinformatics; Analytical models; Pathology; Predictive models; Feature extraction; Cohort guidance; knowledge decomposition; multimodal learning; prognosis prediction; survival analysis; FOUNDATION MODEL; REGRESSION; HISTOLOGY;
D O I
10.1109/TMI.2024.3455931
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recently, we have witnessed impressive achievements in cancer survival analysis by integrating multimodal data, e.g., pathology images and genomic profiles. However, the heterogeneity and high dimensionality of these modalities pose significant challenges in extracting discriminative representations while maintaining good generalization. In this paper, we propose a Cohort-individual Cooperative Learning (CCL) framework to advance cancer survival analysis by collaborating knowledge decomposition and cohort guidance. Specifically, first, we propose a Multimodal Knowledge Decomposition (MKD) module to explicitly decompose multimodal knowledge into four distinct components: redundancy, synergy, and uniqueness of the two modalities. Such a comprehensive decomposition can enlighten the models to perceive easily overlooked yet important information, facilitating an effective multimodal fusion. Second, we propose a Cohort Guidance Modeling (CGM) to mitigate the risk of overfitting task-irrelevant information. It can promote a more comprehensive and robust understanding of the underlying multimodal data while avoiding the pitfalls of overfitting and enhancing the generalization ability of the model. By cooperating with the knowledge decomposition and cohort guidance methods, we develop a robust multimodal survival analysis model with enhanced discrimination and generalization abilities. Extensive experimental results on five cancer datasets demonstrate the effectiveness of our model in integrating multimodal data for survival analysis. Our code is available at https://github.com/moothes/CCL-survival.
引用
收藏
页码:656 / 667
页数:12
相关论文
共 50 条
  • [31] BENCHMARK ANALYSIS: MULTI-INSTITUTIONAL COOPERATIVE COHORT FOR GALLBLADDER CANCER SURGERY
    Vega, Eduardo A.
    Newhook, Timothy E.
    Ruzzenente, Andrea
    Okuno, Masayuki
    De Bellis, Mario
    Mellado, Sebastian
    Panettieri, Elena
    De Rose, Agostino Maria
    Nishino, Hiroto
    Chun, Yun Shin
    Cao, Hop Tran
    Tzeng, Ching-Wei D.
    de Aretxabala, Xabier
    Seo, Satoru
    Giulilante, Felic
    Guglielmi, Alfredo
    Vinuela, Eduardo
    Vauthey, Jean-Nicolas
    GASTROENTEROLOGY, 2022, 162 (07) : S1345 - S1345
  • [32] Predicting survival in glioblastoma with multimodal neuroimaging and machine learning
    Luckett, Patrick H.
    Olufawo, Michael
    Lamichhane, Bidhan
    Park, Ki Yun
    Dierker, Donna
    Verastegui, Gabriel Trevino
    Yang, Peter
    Kim, Albert H.
    Chheda, Milan G.
    Snyder, Abraham Z.
    Shimony, Joshua S.
    Leuthardt, Eric C.
    JOURNAL OF NEURO-ONCOLOGY, 2023, 164 (02) : 309 - 320
  • [33] Predicting survival in glioblastoma with multimodal neuroimaging and machine learning
    Patrick H. Luckett
    Michael Olufawo
    Bidhan Lamichhane
    Ki Yun Park
    Donna Dierker
    Gabriel Trevino Verastegui
    Peter Yang
    Albert H. Kim
    Milan G. Chheda
    Abraham Z. Snyder
    Joshua S. Shimony
    Eric C. Leuthardt
    Journal of Neuro-Oncology, 2023, 164 (2) : 309 - 320
  • [34] Prediction of survival in the individual with breast cancer
    Blamey, R
    AUSTRALIAN AND NEW ZEALAND JOURNAL OF SURGERY, 1999, 69 (01): : 67 - 68
  • [35] Derivative survival analyses: Analysis methods to derive survival outcomes for the remainder patient cohort without individual patient data
    Shenoy, Niraj K.
    CELL REPORTS MEDICINE, 2024, 5 (04)
  • [36] Effect of multimodal chemotherapy on survival of gastric cancer with liver metastasis - a population based analysis
    Li, Xinghui
    Chen, Zhiqiang
    Zhang, Yue
    Zhang, Hong
    Niu, Haiyan
    Zheng, Cheng
    Jing, Xiaoying
    Qiao, Hui
    Wang, Guanhua
    Yang, Wenjun
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [37] Distribution of Cancer cases and survival analysis results: A retrospective cohort study
    Pehlivan, E.
    Mete, B.
    Soyiler, V.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2019, 29
  • [38] Survival benefit of tamoxifen in male breast cancer: prospective cohort analysis
    Holm Eggemann
    Cosima Brucker
    Michael Schrauder
    Marc Thill
    Felix Flock
    Mattea Reinisch
    Serban-Dan Costa
    Atanas Ignatov
    British Journal of Cancer, 2020, 123 : 33 - 37
  • [39] Selective versus systematic lymphadenectomy for endometrial cancer: A cohort survival analysis
    Seamon, L.
    Cohn, D.
    Carlson, M.
    Elder, J.
    Ferda, A.
    Taege, S.
    Ueland, F.
    Shelton, B.
    Slone, S.
    DeSimone, C.
    GYNECOLOGIC ONCOLOGY, 2012, 125 : S18 - S19
  • [40] Survival benefit of tamoxifen in male breast cancer: prospective cohort analysis
    Eggemann, Holm
    Brucker, Cosima
    Schrauder, Michael
    Thill, Marc
    Flock, Felix
    Reinisch, Mattea
    Costa, Serban-Dan
    Ignatov, Atanas
    BRITISH JOURNAL OF CANCER, 2020, 123 (01) : 33 - 37