Surface Reaction Induced Compressive Strain for Stable Inorganic Perovskite Solar Cells

被引:3
|
作者
Jiang, Ying [1 ,2 ]
Sun, Xiangnan [1 ,2 ]
Liu, Tianjun [3 ]
Zhang, Wei [1 ,2 ]
Xu, Peng [1 ,2 ]
Li, Bowen [1 ,2 ]
Zhao, Xiaoming [1 ,2 ]
Guo, Wanlin [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Minist Educ, State Key Lab Mech & Control Aerosp Struct, Key Lab Intelligent Nano Mat & Devices, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Inst Frontier Sci, Nanjing 210016, Peoples R China
[3] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England
基金
中国博士后科学基金;
关键词
compressive strain; inorganic perovskites; perovskite solar cells; stability; surface reaction; EFFICIENT; STABILIZATION; ENABLES; IMPACT;
D O I
10.1002/anie.202410721
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cesium-based inorganic perovskites have emerged as promising light-harvesting materials for perovskite solar cells (PSCs) due to their promising thermal- and photo-stability. However, obstacles to commercialization remain regarding their phase instability. In this work, we report a facile and effective strategy to regulate the surface compressive strain via in situ surface reaction to stabilize CsPbI3 perovskite. The use of a chelating ligand with a molecular configuration closely matching the integer multiples of the unit cell lattice parameters of CsPbI3 induces compressive strain at the surface of CsPbI3. The chemical bonding and strain modulation synergistically not only passivate film defects, but also inhibit perovskite phase degradation, thus significantly improving the intrinsic stability of inorganic perovskite. Consequently, enhanced power conversion efficiency (PCE) of 21.0 % and 18.6 % were respectively achieved in 0.16-cm2 lab-scale devices and 25.3-cm2 solar modules. Further, surface reaction enables PSCs with enhanced thermal and operational stability; these devices retain over 95 % of their initial PCE after damp-heat tests (i.e., in 85 degrees C and 85 % R. H. air) for 2000 h, and remain 99 % of their initial PCE after operating for 2000 h, representing one of the most stable inorganic PSCs reported so far.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Recent advancements and challenges in highly stable all-inorganic perovskite solar cells
    Kim, Sunkyu
    Adnan, Muhammad
    Irshad, Zobia
    Lee, Wonjong
    Yun, Siwon
    Han, Hyeji
    Lim, Jongchul
    MATERIALS TODAY ELECTRONICS, 2024, 10
  • [42] Efficient and stable inorganic perovskite solar cells enabled by a lead silicate glass layer
    Yang, Wanpeng
    Yu, Haixuan
    Zhang, Zhiguo
    Shi, Haodan
    Hu, Yong
    Huang, Junyi
    Liu, Zhirong
    Shen, Yan
    Wang, Mingkui
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (32) : 21367 - 21372
  • [43] Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells
    Bumjin Gil
    Alan Jiwan Yun
    Younghyun Lee
    Jinhyun Kim
    Byungho Lee
    Byungwoo Park
    Electronic Materials Letters, 2019, 15 : 505 - 524
  • [44] Target therapy at buried interfaces toward efficient and stable inorganic perovskite solar cells
    Bian, Liqiang
    Jia, Yun
    Zhao, Yuanyuan
    Dou, Zhi
    Guo, Qiyao
    Duan, Jialong
    Dou, Jie
    Sun, Liqing
    Zhang, Qiang
    Tang, Qunwei
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [45] Interfacial engineering with trivalent cations for efficient and stable inverted inorganic perovskite solar cells
    Wang, Zezhang
    Xu, Tianfei
    Li, Nan
    Liu, Yali
    Li, Kun
    Fan, Zihao
    Tan, Jieke
    Chen, Dehong
    Liu, Shengzhong
    Xiang, Wanchun
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (19) : 7271 - 7280
  • [46] Reconstructing the amorphous and defective surface for efficient and stable perovskite solar cells
    Xie, Jiangsheng
    Zhao, Shenghe
    Hang, Pengjie
    Chen, Tian
    Wen, Bin
    Yin, Qixin
    Wei, Shichen
    Zhu, Shengcai
    Yu, Xuegong
    Qin, Minchao
    Lu, Xinhui
    Yan, Keyou
    Xu, Jianbin
    Gao, Pingqi
    SCIENCE CHINA-MATERIALS, 2023, 66 (04) : 1323 - 1331
  • [47] Imidazoanthraquinone Derivative as a Surface Passivator for Enhanced and Stable Perovskite Solar Cells
    Siddiqui, Qamar Tabrez
    Kotta, Ashique
    Seo, Inseok
    Seo, Hyung-Kee
    ACS OMEGA, 2024, 9 (11): : 13373 - 13381
  • [48] Surface modulation of halide perovskite films for efficient and stable solar cells
    Dai, Qinxuan
    Luo, Chao
    Wang, Xianjin
    Gao, Feng
    Jiang, Xiaole
    Zhao, Qing
    CHINESE PHYSICS B, 2022, 31 (03)
  • [49] Highly Stable All-Inorganic Perovskite Solar Cells Processed at Low Temperature
    Tang, Kai Chi
    You, Peng
    Yan, Feng
    SOLAR RRL, 2018, 2 (08):
  • [50] Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells
    Gil, Bumjin
    Yun, Alan Jiwan
    Lee, Younghyun
    Kim, Jinhyun
    Lee, Byungho
    Park, Byungwoo
    ELECTRONIC MATERIALS LETTERS, 2019, 15 (05) : 505 - 524