Mandarin Recognition Based on Self-Attention Mechanism with Deep Convolutional Neural Network (DCNN)-Gated Recurrent Unit (GRU)

被引:0
|
作者
Chen, Xun [1 ]
Wang, Chengqi [1 ]
Hu, Chao [1 ]
Wang, Qin [1 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
self-attention mechanism; CTC; gated circulation units;
D O I
10.3390/bdcc8120195
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Speech recognition technology is an important branch in the field of artificial intelligence, aiming to transform human speech into computer-readable text information. However, speech recognition technology still faces many challenges, such as noise interference, and accent and speech rate differences. An aim of this paper is to explore a deep learning-based speech recognition method to improve the accuracy and robustness of speech recognition. Firstly, this paper introduces the basic principles of speech recognition and existing mainstream technologies, and then focuses on the deep learning-based speech recognition method. Through comparative experiments, it is found that the self-attention mechanism performs best in speech recognition tasks. In order to further improve speech recognition performance, this paper proposes a deep learning model based on the self-attention mechanism with DCNN-GRU. The model realizes the dynamic attention to an input speech by introducing the self-attention mechanism in a neural network model instead of an RNN and with a deep convolutional neural network, which improves the robustness and recognition accuracy of this model. This experiment uses 170 h of Chinese dataset AISHELL-1. Compared with the deep convolutional neural network, the deep learning model based on the self-attention mechanism with DCNN-GRU accomplishes a reduction of at least 6% in CER. Compared with a bidirectional gated recurrent neural network, the deep learning model based on the self-attention mechanism with DCNN-GRU accomplishes a reduction of 0.7% in CER. And finally, this experiment is performed on a test set analyzed the influencing factors affecting the CER. The experimental results show that this model exhibits good performance in various noise environments and accent conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Piecewise convolutional neural network relation extraction with self-attention mechanism
    Zhang, Bo
    Xu, Li
    Liu, Ke-Hao
    Yang, Ru
    Li, Mao-Zhen
    Guo, Xiao-Yang
    PATTERN RECOGNITION, 2025, 159
  • [22] Image Classification based on Self-attention Convolutional Neural Network
    Cai, Xiaohong
    Li, Ming
    Cao, Hui
    Ma, Jingang
    Wang, Xiaoyan
    Zhuang, Xuqiang
    SIXTH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2021, 11913
  • [23] Real Time Human Activity Recognition Using Convolutional Neural Network and Deep Gated Recurrent Unit
    Fajar, Rasyid
    Suciati, Nanik
    Navastara, Dini Adni
    2020 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS (ICELTICS 2020), 2020, : 58 - 63
  • [24] Convolutional Recurrent Neural Networks with a Self-Attention Mechanism for Personnel Performance Prediction
    Xue, Xia
    Feng, Jun
    Gao, Yi
    Liu, Meng
    Zhang, Wenyu
    Sun, Xia
    Zhao, Aiqi
    Guo, Shouxi
    ENTROPY, 2019, 21 (12)
  • [25] Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism
    Zhang, Jiusi
    Jiang, Yuchen
    Wu, Shimeng
    Li, Xiang
    Luo, Hao
    Yin, Shen
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 221
  • [26] Siamese Recurrent Neural Network with a Self-Attention Mechanism for Bioactivity Prediction
    Fernandez-Llaneza, Daniel
    Ulander, Silas
    Gogishvili, Dea
    Nittinger, Eva
    Zhao, Hongtao
    Tyrchan, Christian
    ACS OMEGA, 2021, 6 (16): : 11086 - 11094
  • [27] Fault diagnosis of rolling bearing based on deep convolutional neural network and gated recurrent unit
    Zhou, Zhexin
    Wang, Hao
    LI, Zhuoxian
    Chen, Wei
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2023, 17 (02)
  • [28] Deep Clustering Efficient Learning Network for Motion Recognition Based on Self-Attention Mechanism
    Ru, Tielin
    Zhu, Ziheng
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [29] A Novel Methodology for Credit Spread Prediction: Depth-Gated Recurrent Neural Network with Self-Attention Mechanism
    Liu, Xiao
    Zhou, Rongxi
    Qi, Daifeng
    Xiong, Yahui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [30] Self-Attention based Siamese Neural Network recognition Model
    Liu, Yuxing
    Chang, Geng
    Fu, Guofeng
    Wei, Yingchao
    Lan, Jie
    Liu, Jiarui
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 721 - 724