Quasilinear modelling of collisional trapped electron modes

被引:1
|
作者
Stephens, C. D. [1 ]
Citrin, J. [2 ,3 ]
van de Plassche, K. L. [2 ]
Bourdelle, C. [4 ]
Tala, T. [5 ]
Salmi, A. [5 ]
Jenko, F. [1 ,6 ]
机构
[1] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
[2] DIFFER Dutch Inst Fundamental Energy Res, Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Sci & Technol Nucl Fus Grp, Eindhoven, Netherlands
[4] CEA, IRFM, F-13108 St Paul Les Durance, France
[5] VTT Tech Res Ctr Finland, Tietotie 3, Espoo 02044, Finland
[6] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
关键词
plasma simulation; fusion plasma; TRANSPORT; STABILITY; DRIFT;
D O I
10.1017/S0022377824000837
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The simplification of collision operators is necessary for quasilinear turbulence modelling used with integrated modelling frameworks, such as the gyrokinetic code QuaLiKiz. The treatment of collisions greatly impacts the accuracy of trapped electron mode (TEM) modelling, which is necessary to predict the electron heat flux and the balance between inward and outward particle fluxes. In particular, accurate particle flux predictions are necessary to successfully model density peaking in the tokamak core. We explored two ways of improving collisional TEM model reduction for tokamak core plasmas. First, we carried out linear GENE simulations to study the complex interplay between collisions and trapped electrons. We then used these simulations to define an effective trapped fraction to characterize the collisional TEM based on two key parameters, the local inverse-aspect ratio $\epsilon$ and the collisionality $\nu <^>\ast$. One aspect missing from analytical TEM research is that the collisional frequency and the bounce-transit frequency are both velocity dependent; this effective trapped fraction takes both into account. In doing so, we determined that two parameters are not enough to model the collisional TEM, as an additional third free parameter was necessary. We determined that this model, as currently formulated, is not suitable for integrated modelling purposes. Second, we directly improved QuaLiKiz's Krook operator, which relies on two free parameters. We determined that these parameters required adjustments against higher-fidelity collisional models. In order to improve density profile predictions when paired with integrated models, we refined the Krook operator by using GENE simulations as a higher-fidelity point of comparison. We then demonstrate strong improvement of density peaking predictions of QuaLiKiz within the integrated modelling framework JETTO.
引用
收藏
页数:46
相关论文
共 50 条
  • [21] EFFECTS OF CROSS-SECTIONAL ELONGATION ON TRAPPED ELECTRON MODES
    CHU, KR
    OTT, E
    MANHEIMER, WM
    PHYSICS OF FLUIDS, 1978, 21 (04) : 664 - 668
  • [22] A gyro-kinetic model for trapped electron and ion modes
    Drouot, Thomas
    Gravier, Etienne
    Reveille, Thierry
    Ghizzo, Alain
    Bertrand, Pierre
    Garbet, Xavier
    Sarazin, Yanick
    Cartier-Michaud, Thomas
    EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (10):
  • [23] Discriminating the trapped electron modes contribution in density fluctuation spectra
    Arnichand, H.
    Sabot, R.
    Hacquin, S.
    Kraemer-Flecken, A.
    Bourdelle, C.
    Citrin, J.
    Garbet, X.
    Giacalone, J. C.
    Guirlet, R.
    Hillesheim, J. C.
    Meneses, L.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    NUCLEAR FUSION, 2015, 55 (09)
  • [24] Turbulent Transport of Trapped-Electron Modes in Collisionless Plasmas
    Xiao, Yong
    Lin, Zhihong
    PHYSICAL REVIEW LETTERS, 2009, 103 (08)
  • [25] CURVATURE AND GRADIENT DRIFT EFFECTS ON TRAPPED-ELECTRON MODES
    CRYSTAL, TL
    DENAVIT, J
    PHYSICS OF FLUIDS, 1980, 23 (10) : 1986 - 1997
  • [26] COMPUTER-SIMULATION OF TRAPPED-ELECTRON MODES IN TOKAMAKS
    CRYSTAL, TL
    DENAVIT, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 37 (02) : 151 - 170
  • [27] Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes
    Asahi, Y.
    Ishizawa, A.
    Watanabe, T. -H.
    Tsutsui, H.
    Tsuji-Iio, S.
    PHYSICS OF PLASMAS, 2014, 21 (05)
  • [28] CALCULATION OF TRAPPED-ELECTRON EQUILIBRIUM MACROSCOPIC OBSERVABLES USING COLLISIONAL PLASMA MODEL
    VANRIJ, WI
    BEASLEY, CO
    MCCUNE, JE
    MEIER, HK
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1310 - 1310
  • [29] COLLISIONAL IMPURITY MODES
    COPPI, B
    SCHEP, TJ
    PHYSICS LETTERS A, 1974, A 46 (05) : 361 - 362
  • [30] COLLISIONAL IMPURITY MODES
    SCHEP, TJ
    COPPI, B
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (04): : 584 - 584