Role of nanoparticle radius for heat transfer optimization in MHD dusty fluid across stretching sheet

被引:0
|
作者
Hussain, Muzammil [1 ]
Ali, Bagh [2 ]
Awan, Aziz Ullah [1 ]
Alharthi, Mohammed [3 ]
Alrashedi, Yasser [4 ]
机构
[1] Univ Punjab, Dept Math, Lahore 54590, Pakistan
[2] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
[3] Univ Bisha, Coll Sci, Dept Math, POB 344, Bisha 61922, Saudi Arabia
[4] Taibah Univ, Coll Sci, Dept Math, POB 344, Madinah 42353, Saudi Arabia
关键词
Nanofluid; Dusty fluid; Stretching surface; Nanoparticle radius variation; Numerical solution; Mixed convection; CONTINUOUS SOLID SURFACES; BOUNDARY-LAYER BEHAVIOR; THERMAL-RADIATION; FLOW; NANOFLUID;
D O I
10.1007/s10973-024-13738-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
This research aims to assess the significance of nanoparticle size on the natural convection magnetohydrodynamic (MHD) boundary layer flow of a dusty nanofluid across a stretching sheet. Dusty fluids are widely used in industries such as manufacturing and construction, particularly in areas like infrastructure development and material processing. They are used in petroleum transportation, gas purification, power plant piping, automotive exhaust systems, and sedimentation operations. In this study, dusty nanofluid is composed of copper nanoparticles suspended in a mixture of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_6$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O (50-50%) with a Prandtl number Pr=3.97\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Pr}=3.97$$\end{document}. The similarity transformations convert the governing partial differential equations (PDEs) into ordinary differential equations (ODEs). These ODEs are then solved numerically using MATLAB's built-in "bvp4c" method. The effects of various involved parameters on velocity, temperature, skin friction, and Nusselt number are exemplified graphically. The findings indicate that increasing the nanoparticle radius causes temperatures to decrease for both phases, while increasing velocities for both phases. A rise in the suction parameter results in lower temperature and velocity for both phases. A surge in the Biot number significantly raises the temperatures of both phases. Increasing the suction parameter, nanoparticle radius, and Biot number increases the Nusselt number, which optimizes effective heat transfer efficiency by improving thermal conductivity and nanofluid mobility. Skin friction increases for smaller nanoparticles and enhanced suction.
引用
收藏
页码:15179 / 15192
页数:14
相关论文
共 50 条
  • [21] Effect of viscous dissipation and heat source on flow and heat transfer of dusty fluid over unsteady stretching sheet
    B.J.GIREESHA
    G.S.ROOPA
    C.S.BAGEWADI
    AppliedMathematicsandMechanics(EnglishEdition), 2012, 33 (08) : 1001 - 1014
  • [22] MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet
    Abel, M. Subhas
    Tawade, Jagadish V.
    Nandeppanavar, Mahantesh M.
    MECCANICA, 2012, 47 (02) : 385 - 393
  • [23] MHD FLOW AND HEAT TRANSFER IN A CASSON FLUID OVER A NONLINEARLY STRETCHING SHEET WITH NEWTONIAN HEATING
    Hussanan, Abid
    Salleh, Mohd Zuki
    Alkasasbeh, Hamzeh Taha
    Khan, Ilyas
    HEAT TRANSFER RESEARCH, 2018, 49 (12) : 1185 - 1198
  • [24] The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet
    Prasad, K. V.
    Pal, Dulal
    Umesh, V.
    Rao, N. S. Prasanna
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) : 331 - 344
  • [25] MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet
    M. Subhas Abel
    Jagadish V. Tawade
    Mahantesh M. Nandeppanavar
    Meccanica, 2012, 47 : 385 - 393
  • [26] An MHD couple stress fluid due to a perforated sheet undergoing linear stretching with heat transfer
    Mahabaleshwar, U. S.
    Sarris, I. E.
    Hill, A. A.
    Lorenzini, Giulio
    Pop, Ioan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 105 : 157 - 167
  • [27] MHD FLOW AND HEAT TRANSFER NEAR THE STAGNATION POINT ON A STRETCHING/SHRINKING SHEET IN A MICROPOLAR FLUID
    Bachok, N.
    Ishak, A.
    Pop, I.
    MAGNETOHYDRODYNAMICS, 2011, 47 (03): : 237 - 247
  • [28] Study of Heat and Mass Transfer in MHD Flow of Micropolar Fluid over a Curved Stretching Sheet
    Yasmin, Asia
    Ali, Kashif
    Ashraf, Muhammad
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [29] Study of Heat and Mass Transfer in MHD Flow of Micropolar Fluid over a Curved Stretching Sheet
    Asia Yasmin
    Kashif Ali
    Muhammad Ashraf
    Scientific Reports, 10
  • [30] The influence of heat transfer in an MHD second grade fluid film over an unsteady stretching sheet
    Hayat, T.
    Saif, S.
    Abbas, Z.
    PHYSICS LETTERS A, 2008, 372 (30) : 5037 - 5045