Role of nanoparticle radius for heat transfer optimization in MHD dusty fluid across stretching sheet

被引:0
|
作者
Hussain, Muzammil [1 ]
Ali, Bagh [2 ]
Awan, Aziz Ullah [1 ]
Alharthi, Mohammed [3 ]
Alrashedi, Yasser [4 ]
机构
[1] Univ Punjab, Dept Math, Lahore 54590, Pakistan
[2] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
[3] Univ Bisha, Coll Sci, Dept Math, POB 344, Bisha 61922, Saudi Arabia
[4] Taibah Univ, Coll Sci, Dept Math, POB 344, Madinah 42353, Saudi Arabia
关键词
Nanofluid; Dusty fluid; Stretching surface; Nanoparticle radius variation; Numerical solution; Mixed convection; CONTINUOUS SOLID SURFACES; BOUNDARY-LAYER BEHAVIOR; THERMAL-RADIATION; FLOW; NANOFLUID;
D O I
10.1007/s10973-024-13738-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
This research aims to assess the significance of nanoparticle size on the natural convection magnetohydrodynamic (MHD) boundary layer flow of a dusty nanofluid across a stretching sheet. Dusty fluids are widely used in industries such as manufacturing and construction, particularly in areas like infrastructure development and material processing. They are used in petroleum transportation, gas purification, power plant piping, automotive exhaust systems, and sedimentation operations. In this study, dusty nanofluid is composed of copper nanoparticles suspended in a mixture of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_6$$\end{document}O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O (50-50%) with a Prandtl number Pr=3.97\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Pr}=3.97$$\end{document}. The similarity transformations convert the governing partial differential equations (PDEs) into ordinary differential equations (ODEs). These ODEs are then solved numerically using MATLAB's built-in "bvp4c" method. The effects of various involved parameters on velocity, temperature, skin friction, and Nusselt number are exemplified graphically. The findings indicate that increasing the nanoparticle radius causes temperatures to decrease for both phases, while increasing velocities for both phases. A rise in the suction parameter results in lower temperature and velocity for both phases. A surge in the Biot number significantly raises the temperatures of both phases. Increasing the suction parameter, nanoparticle radius, and Biot number increases the Nusselt number, which optimizes effective heat transfer efficiency by improving thermal conductivity and nanofluid mobility. Skin friction increases for smaller nanoparticles and enhanced suction.
引用
收藏
页码:15179 / 15192
页数:14
相关论文
共 50 条
  • [1] MHD Flow and Nonlinear Thermal Radiative Heat Transfer of Dusty Prandtl Fluid over a Stretching Sheet
    Kumar, K. Ganesh
    Manjunatha, S.
    Rudraswamy, N. G.
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2020, 16 (02): : 131 - 146
  • [2] Heat and Mass Transfer of Dusty Casson Fluid over a Stretching Sheet
    Roy, Nepal Chandra
    Saha, Goutam
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (12) : 16091 - 16101
  • [3] Heat and Mass Transfer of Dusty Casson Fluid over a Stretching Sheet
    Nepal Chandra Roy
    Goutam Saha
    Arabian Journal for Science and Engineering, 2022, 47 : 16091 - 16101
  • [5] Heat transfer in the MHD flow of a viscoelastic fluid over a stretching sheet
    Lawrence, PS
    Rao, BN
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 (04): : 317 - 319
  • [6] Unsteady MHD flow and heat transfer on a stretching sheet in a rotating fluid
    Abbas, Z.
    Javed, T.
    Sajid, M.
    Ali, N.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2010, 41 (06) : 644 - 650
  • [7] MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo-Christov heat flux model
    Gireesha, B. J.
    Shankaralingappa, B. M.
    Prasannakumar, B. C.
    Nagaraja, B.
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2020, : 1 - 9
  • [8] A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet
    Ahmed, Jawad
    Shahzad, Azeem
    Khan, Masood
    Ali, Ramzan
    AIP ADVANCES, 2015, 5 (11):
  • [9] MHD Heat and Mass Transfer of Micropolar Fluid Flow Over a Stretching Sheet
    Bhargava, R.
    Sharma, S.
    Bhargava, P.
    Takhar, H. S.
    INTERNATIONAL JOURNAL OF FLUID MECHANICS RESEARCH, 2007, 34 (01) : 79 - 97
  • [10] MHD Fluid Flow and Heat Transfer of Micropolar Ferrofluids Over a Stretching Sheet
    Khan, W. A.
    Khan, Z. H.
    Qasim, M.
    JOURNAL OF NANOFLUIDS, 2016, 5 (04) : 567 - 573