Experimental insights into droplet behavior on Van der Waals and non-Van der Waals liquid-impregnated surfaces

被引:0
|
作者
Ganar, Shubham S. [1 ]
Das, Arindam [1 ]
机构
[1] Indian Inst Technol IIT Goa, Sch Mech Sci, GEC Campus, Goa 403401, India
关键词
IMPACT DYNAMICS; SUPERHYDROPHOBIC SURFACES; INFUSED SURFACES; ADHESION; ICE;
D O I
10.1063/5.0236861
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
During the transportation process of debris flow with large wood (LW), phenomena such as channel blockage and collapse frequently occurs, resulting in increased discharge surges, heightened erosion intensity, and amplified damage. Accurately predicted the blockage performance is the basis of evaluating the damage and disaster mitigation of woody debris flow. In this study, we conducted a series of laboratory experiments of woody debris flow on erodible gully bed. The experiment results show that the final blockage types can be divided into three types: non-blockage, blockage, and semi-blockage. Temporary blockage will cause abundant sediment deposited temporarily and then released instantaneously, resulting in destructive surges and eventually lead to semi-blockage and non-blockage. The blockage degree is positively correlated with the relative length, relative content of LW, and bulk density of debris flow, but negatively correlated with slope. Channel blockage is often accompanied by significant local erosion effect, and the erosion depth of downstream channel increases with the increase in blockage degree. The blockage and collapse mechanism of woody debris flow was analyzed, and the results emphasized that channel erosion promoted the outbreak of blockage collapse. Based on the analysis of blockage performance, we propose an improved blockage criterion F to evaluate the blockage degree, and the high probability range of temporary blockage is determined as 1.5-5.0. The results can provide reference for the risk assessment and mitigation of woody debris flow.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] van der Waals revisited
    Baerwinkel, Klaus
    Schnack, Juergen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (18) : 4581 - 4588
  • [42] The van der Waals' formula
    Fuchs, K
    ANNALEN DER PHYSIK, 1907, 23 (07) : 385 - 391
  • [43] From van der Waals to VTPR: The systematic improvement of the van der Waals equation of state
    Schmid, Bastian
    Gmehling, Juergen
    JOURNAL OF SUPERCRITICAL FLUIDS, 2010, 55 (02): : 438 - 447
  • [44] Van der Waals nanomesh electronics on arbitrary surfaces
    Meng, You
    Li, Xiaocui
    Kang, Xiaolin
    Li, Wanpeng
    Wang, Wei
    Lai, Zhengxun
    Wang, Weijun
    Quan, Quan
    Bu, Xiuming
    Yip, SenPo
    Xie, Pengshan
    Chen, Dong
    Li, Dengji
    Wang, Fei
    Yeung, Chi-Fung
    Lan, Changyong
    Liu, Chuntai
    Shen, Lifan
    Lu, Yang
    Chen, Furong
    Wong, Chun-Yuen
    Ho, Johnny C.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [45] Density functionals and van der Waals interactions at surfaces
    Lundqvist, BI
    Hult, E
    Rydberg, H
    Bogicevic, A
    Strömquist, J
    Langreth, DC
    PROGRESS IN SURFACE SCIENCE, 1998, 59 (1-4) : 149 - 165
  • [46] SHAPE GROUP THEORY OF VAN DER WAALS SURFACES
    Arteca, Gustavo A.
    Mezey, Paul G.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1989, 3 (01) : 43 - 71
  • [47] Potential energy surfaces of van der Waals molecules
    Dizon, Joseph B.
    de la Roza, Alberto Otero
    Johnson, Erin R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [48] VAN-DER-WAALS THEORY OF CURVED SURFACES
    BLOKHUIS, EM
    BEDEAUX, D
    MOLECULAR PHYSICS, 1993, 80 (04) : 705 - 720
  • [49] Van der Waals nanomesh electronics on arbitrary surfaces
    You Meng
    Xiaocui Li
    Xiaolin Kang
    Wanpeng Li
    Wei Wang
    Zhengxun Lai
    Weijun Wang
    Quan Quan
    Xiuming Bu
    SenPo Yip
    Pengshan Xie
    Dong Chen
    Dengji Li
    Fei Wang
    Chi-Fung Yeung
    Changyong Lan
    Chuntai Liu
    Lifan Shen
    Yang Lu
    Furong Chen
    Chun-Yuen Wong
    Johnny C. Ho
    Nature Communications, 14
  • [50] Density functional for van der Waals forces at surfaces
    Hult, E
    Andersson, Y
    Lundqvist, BI
    Langreth, DC
    PHYSICAL REVIEW LETTERS, 1996, 77 (10) : 2029 - 2032