Tensor rank and other multipartite entanglement measures of graph states

被引:0
|
作者
Schatzki, Louis [1 ,2 ]
Ma, Linjian [2 ,3 ]
Solomonik, Edgar [2 ,3 ]
Chitambar, Eric [1 ,2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Illinois Quantum Informat Sci & Technol Ctr, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
关键词
MEAN-FIELD THEORY; DYNAMICS; SYSTEM;
D O I
10.1103/PhysRevA.110.032409
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Graph states play an important role in quantum information theory through their connection to measurement- based computing and error correction. Prior work revealed elegant connections between the graph structure of these states and their multipartite entanglement. We continue this line of investigation by identifying additional entanglement properties for certain types of graph states. From the perspective of tensor theory, we tighten both upper and lower bounds on the tensor rank of odd ring states (|R2n+1) to read 2n + 1 rank(|R2n+1) 3 x 2n-1. Next we show that several multipartite extensions of bipartite entanglement measures are dichotomous for graph states based on the connectivity of the corresponding graph. Finally, we give a simple graph rule for computing the n-tangle t n .
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Operational Multipartite Entanglement Measures
    Schwaiger, K.
    Sauerwein, D.
    Cuquet, M.
    de Vicente, J. I.
    Kraus, B.
    PHYSICAL REVIEW LETTERS, 2015, 115 (15)
  • [22] Estimating multipartite entanglement measures
    Osterloh, Andreas
    Hyllus, Philipp
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [23] Geometric multipartite entanglement measures
    Paz-Silva, Gerardo A.
    Reina, John H.
    PHYSICS LETTERS A, 2007, 365 (1-2) : 64 - 69
  • [24] A Family of Multipartite Entanglement Measures
    Vrana, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 637 - 664
  • [25] A Family of Multipartite Entanglement Measures
    Péter Vrana
    Communications in Mathematical Physics, 2023, 402 : 637 - 664
  • [26] Parametrized multipartite entanglement measures
    Li, Hui
    Gao, Ting
    Yan, Fengli
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [27] Multipartite Entanglement in Stabilizer Tensor Networks
    Nezami, Sepehr
    Walter, Michael
    PHYSICAL REVIEW LETTERS, 2020, 125 (24)
  • [28] Multipartite entanglement in conditional states
    Urbina, Juan Diego
    Strunz, Walter T.
    Viviescas, Carlos
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [29] Robustness of Λ-entanglement of multipartite states
    Yang, Ying
    Cao, Huai-Xin
    Meng, Hui-Xian
    QUANTUM INFORMATION PROCESSING, 2019, 18 (12)
  • [30] CANDIDATES FOR UNIVERSAL MEASURES OF MULTIPARTITE ENTANGLEMENT
    Hedemann, Samuel R.
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (5-6) : 443 - 471