Mechanical Properties and Fire Resistance of 3D-Printed Cementitious Composites with Plastic Waste

被引:0
|
作者
Yaqub, Walid [1 ]
Aslani, Farhad [1 ]
机构
[1] Univ Western Australia, Sch Engn, Mat & Struct Innovat Grp, Perth, WA 6009, Australia
关键词
3D-printed cementitious composites; Mechanical properties; Fire resistance; Plastic waste; CONCRETE; FIBER;
D O I
10.1186/s40069-024-00731-7
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The study focuses on the development of cementitious composites using 3D printing and plastic waste as a sustainable aggregate substitute. This study involves experimenting with various percentages of plastic waste as a partial substitute for ground granulated blast furnace slag (GGBFS) in a control mix. The study examines the anisotropy of the 3D printing process, comparing it with properties of mold-cast samples. In addition, it assesses the fire resistance and mechanical properties of samples at elevated temperatures (100 degrees C, 300 degrees C, and 600 degrees C). Key mechanical properties, including 28-day compressive stress and flexural strength, are determined through experimental testing using a standard compression test and three-point bending test. The study also considers the modulus of elasticity (MOE) in compressive tests to evaluate a sample's ability to deform elastically and the flexural toughness index to assess energy absorption and crack resistance of flexural samples. Following the experimental testing, the study's key findings suggest that significant mass loss occurred at 300 degrees C and above, with plastic samples demonstrating increased mass loss at 600 degrees C. At 600 degrees C, plastic degradation led to the formation of voids and cracks within samples due to heightened internal pressure. Anisotropy was evident in 3D-printed samples, with loads parallel to the layer direction resulting in greater compressive strength and MOE. Furthermore, layer direction parallel to the longitudinal axis of flexural samples yielded higher flexural strength and flexural toughness. Mold-cast samples displayed superior compressive strength and stiffer behavior, with higher MOE compared to 3D-printed samples. However, 3D-printed plastic samples exhibited superior flexural strength compared to mold-cast samples, attributed to the alignment of plastic within the samples. The study also observed a reduction in compressive strength with the addition of plastic, explained by the poor bonding of plastic with cement due to its hydrophobic nature. Despite this, flexural strength generally improved with plastic addition, except at 600 degrees C, where plastic samples showed significant degradation in both compressive and flexural strength due to plastic degradation within the samples.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Combined printable and mechanical analysis of 3D-printed green high-strength, lightweight engineered cementitious composites
    Gou, Hongxiang
    Sofi, Massoud
    Zhang, Zipeng
    Zhu, Mintao
    Zhu, Hongbo
    Mendis, Priyan
    CEMENT & CONCRETE COMPOSITES, 2024, 149
  • [22] Mechanical and thermal properties of 3D-printed epoxy composites reinforced with boron nitride nanobarbs
    Brett G. Compton
    Jackson K. Wilt
    James W. Kemp
    Nadim S. Hmeidat
    Samantha R. Maness
    Mark Edmond
    Steve Wilcenski
    Jason Taylor
    MRS Communications, 2021, 11 : 100 - 105
  • [23] Mechanical and thermal properties of 3D-printed epoxy composites reinforced with boron nitride nanobarbs
    Compton, Brett G.
    Wilt, Jackson K.
    Kemp, James W.
    Hmeidat, Nadim S.
    Maness, Samantha R.
    Edmond, Mark
    Wilcenski, Steve
    Taylor, Jason
    MRS COMMUNICATIONS, 2021, 11 (02) : 100 - 105
  • [24] Enhancing mechanical properties of 3D-printed PLA/wood composites: a metaheuristic and statistical perspective
    Nikhil Bharat
    Vijay Kumar
    D. Veeman
    M. Vellaisamy
    European Journal of Wood and Wood Products, 2025, 83 (3)
  • [25] The Mechanical Properties and Degradation Behavior of 3D-Printed Cellulose Nanofiber/Polylactic Acid Composites
    Zhang, Zhongsen
    Cao, Bingyan
    Jiang, Ning
    MATERIALS, 2023, 16 (18)
  • [26] 3D-Printed PLA Molds for Natural Composites: Mechanical Properties of Green Wax-Based Composites
    Pop, Mihai Alin
    Cosnita, Mihaela
    Croitoru, Catalin
    Zaharia, Sebastian Marian
    Matei, Simona
    Spirchez, Cosmin
    POLYMERS, 2023, 15 (11)
  • [27] Mechanical Characterizations of 3D-printed PLLA/Steel Particle Composites
    Mozafari, Hozhabr
    Dong, Pengfei
    Hadidi, Haitham
    Sealy, Michael P.
    Gu, Linxia
    MATERIALS, 2019, 12 (01):
  • [28] Structure and Mechanical Properties of 3D-Printed Ceramic Specimens
    Promakhov, V. V.
    Zhukov, A. S.
    Vorozhtsov, A. B.
    Schults, N. A.
    Kovalchuk, S. V.
    Kozhevnikov, S. V.
    Olisov, A. V.
    Klimenko, V. A.
    RUSSIAN PHYSICS JOURNAL, 2019, 62 (05) : 876 - 881
  • [29] Anisotropy in mechanical properties of 3D-printed layered concrete
    Slavcheva, G. S.
    Levchenko, A. V.
    Shvedova, M. A.
    Karakchi-ogly, D. R.
    Babenko, D. S.
    MAGAZINE OF CIVIL ENGINEERING, 2024, 17 (03):
  • [30] Mechanical Properties of 3D-Printed Occlusal Splint Materials
    Prpic, Vladimir
    Spehar, Filipa
    Stajdohar, Dominik
    Bjelica, Roko
    Cimic, Samir
    Par, Matej
    DENTISTRY JOURNAL, 2023, 11 (08)