InterGCNet: An Interpolation Geometric Constructive Neural Network for Industrial Data Modeling

被引:0
|
作者
Nan, Jing [1 ,2 ]
Qin, Yan [3 ,4 ]
Arunan, Anushiya [4 ]
Dai, Wei [1 ]
Yuen, Chau [5 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
[2] Singapore Univ Technol & Design, Engn Prod Dev Pillar, Singapore 487372, Singapore
[3] Chongqing Univ, Sch Automat, Chongqing 400044, Peoples R China
[4] Singapore Univ Technol & Design, Engn Prod Dev Pillar, Singapore 487372, Singapore
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Interpolation; Data models; Predictive models; Neural networks; Simulated annealing; Process control; Computational modeling; Biological system modeling; Adaptation models; Product development; Industrial data modeling; interpolation theory; maximum likelihood function; prediction performance; resource-constrained; simulated annealing; ALGORITHMS;
D O I
10.1109/TIM.2024.3470037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For industrial data modeling, how to build data-driven models on resource-constrained industrial devices is a research hotspot. However, existing literature is either high resource consumption or poor prediction performance. To bridge this gap, we propose an interpolation geometric constructive neural network (InterGCNet) with lightweight and good prediction performance. Specifically, we first use the maximum likelihood function to analyze the reasons for the poor prediction of the existing method. Subsequently, we propose an interpolated label with a decay factor to replace the raw label based on the interpolation theory and the simulated annealing. Finally, we prove the universal approximation property (UAP) of InterGCNet by induction. Experimental results, including five benchmark datasets and a PV dataset collected from PV power stations, demonstrate that InterGCNet is performing exceptionally well in terms of prediction performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] ENHANCING CONSTRUCTIVE NEURAL NETWORK PERFORMANCE USING FUNCTIONALLY EXPANDED INPUT DATA
    Bertini Junior, Joao Roberto
    Nicoletti, Maria do Carmo
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2016, 6 (02) : 119 - 131
  • [22] Pixelwise Dynamic Convolution Neural Network for LiDAR Depth Data Interpolation
    Kim, Wonjik
    Tanaka, Masayuki
    Okutomi, Masatoshi
    Sasaki, Yoko
    IEEE SENSORS JOURNAL, 2021, 21 (24) : 27736 - 27747
  • [23] Abductive Neural Network Modeling for Hand Recognition Using Geometric Features
    El-Alfy, El-Sayed M.
    Abdel-Aal, Radwan E.
    Baig, Zubair A.
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT IV, 2012, 7666 : 593 - 602
  • [24] Geometric Graph Neural Network Modeling of Human Interactions in Crowded Environments
    Honarvar, Sara
    Diaz-Mercado, Yancy
    IFAC PAPERSONLINE, 2024, 58 (28): : 25 - 30
  • [25] Neural network modeling of hysteresis for harmonic drive in industrial robots
    Dang X.-J.
    Wang K.-L.
    Jiang H.
    Wu X.-R.
    Zhang X.-W.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2019, 27 (03): : 694 - 701
  • [26] Modeling for a complicated industrial object based on recurrent neural network
    Wei, JP
    Li, HD
    Sun, M
    Sun, SY
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 1040 - 1042
  • [27] Geometric interpolation of data in R3
    Kozak, J
    Zagar, E
    PROCEEDINGS OF THE CONFERENCE ON APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING, 2005, : 245 - 252
  • [28] Constructive and pruning methods for neural network design
    Costa, MA
    Braga, AP
    de Menezes, BR
    VII BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, PROCEEDINGS, 2002, : 49 - 54
  • [29] A constructive neural network algorithm for function approximation
    Draelos, T
    Hush, D
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 50 - 55
  • [30] Constructive Deep ReLU Neural Network Approximation
    Lukas Herrmann
    Joost A. A. Opschoor
    Christoph Schwab
    Journal of Scientific Computing, 2022, 90