We consider the problem of classifying hardware failures in microwave networks given a collection of alarms using Machine Learning (ML). While ML models have been shown to work extremely well on similar tasks, an ML model is, at most, as good as its training data. In microwave networks, building a good-quality dataset is significantly harder than training a good classifier: annotating data is a costly and time-consuming procedure. We, therefore, shift the perspective from a Model-Centric approach, i.e., how to train the best ML model from a given dataset, to a Data-Centric approach, i.e., how to make the best use of the data at our disposal. To this end, we explore two orthogonal Data-Centric approaches for hardware failure identification in microwave networks. At training time, we leverage synthetic data generation with Conditional Variational Autoencoders to cope with extreme data imbalance and ensure fair performance in all failure classes. At inference time, we leverage Batch Uncertainty-based Active Learning to guide the data annotation procedure of multiple concurrent domain-expert labelers and achieve the best possible classification performance with the smallest possible training dataset. Illustrative experimental results on a real-world dataset show that our Data-Centric approaches allow for training top-performing models with similar to 4.5x less annotated data, while improving the classifier's F1-Score by similar to 2.5% in a condition of extreme data scarcity. Finally, for the first time to the best of our knowledge, we make our dataset (curated by microwave industry experts) publicly available, aiming to foster research in data-driven failure management.