High-Resolution Remote Sensing Image Change Detection Based on Fourier Feature Interaction and Multiscale Perception

被引:0
|
作者
Chen, Yongqi [1 ,2 ]
Feng, Shou [1 ,2 ,3 ]
Zhao, Chunhui [1 ,2 ]
Su, Nan [1 ,2 ]
Li, Wei [3 ]
Tao, Ran [3 ]
Ren, Jinchang [4 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Minist Ind & Informat Technol, Key Lab Adv Marine Commun & Informat Technol, Harbin 150001, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100811, Peoples R China
[4] Robert Gordon Univ, Natl Subsea Ctr, Aberdeen AB21 0BH, Scotland
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Frequency-domain analysis; Remote sensing; Semantics; Visualization; Transformers; Buildings; Attention mechanisms; Adaptation models; Representation learning; Change detection; Fourier feature interaction; high-resolution remote sensing image; multiscale change feature; FRAMEWORK; NETWORK;
D O I
10.1109/TGRS.2024.3500073
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
As a significant means of Earth observation, change detection in high-resolution remote sensing images has received extensive attention. Nevertheless, the variability in imaging conditions introduces style discrepancies and a range of pseudochange regions between bitemporal image pairs. Furthermore, changing objects possess diverse morphological representations, which makes accurately identifying change areas and delineating their boundaries within complex object distributions increasingly difficult. In response to the aforementioned challenges, we propose the Fourier feature interaction and multiscale perception (FIMP) model for effective change detection. To mitigate the impact of style discrepancies, FIMP employs the Fourier transform to adaptively filter bitemporal features in the frequency domain while mining the optimized bitemporal features relevant to the change detection task. To enhance the ability to recognize multiscale changing objects, FIMP aggregates and emphasizes the change areas with the introduced temporal change enhancement module (TCEM). By utilizing the U-fusion change perception module (UCPM) to perform multilevel bidirectional fusion of change features at different scales, FIMP can further enhance the ability to delineate complex semantic change boundaries. Experiments on three public datasets show that our approach outperforms seven state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Object Detection For Remote Sensing Image Based on Multiscale Feature Fusion Network
    Tian Tingting
    Yang Jun
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)
  • [33] Study on the technology of classifying high-resolution remote sensing image based on multi-feature
    Lin, H
    Li, JP
    Mo, DK
    Xiong, YJ
    Sun, H
    Liu, XY
    REMOTE SENSING AND SPACE TECHNOLOGY FOR MULTIDISCIPLINARY RESEARCH AND APPLICATIONS, 2006, 6199
  • [34] Quantizing and analyzing the feature information of coastal zone based on high-resolution remote sensing image
    Yang Xiaomei
    Lan Rongqin
    Luo Hancheng
    ACTA OCEANOLOGICA SINICA, 2006, 25 (06) : 33 - 42
  • [35] High-resolution remote sensing image semantic segmentation based on a deep feature aggregation network
    Wang, Zhen
    Guo, Jianxin
    Huang, Wenzhun
    Zhang, Shanwen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [36] Feature Enhancement Attention for Road Extraction in High-Resolution Remote Sensing Image
    Yu, Hang
    Li, Chenyang
    Guo, Yuru
    Zhou, Suiping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 19805 - 19816
  • [37] Change Detection Based on Supervised Contrastive Learning for High-Resolution Remote Sensing Imagery
    Wang, Jue
    Zhong, Yanfei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [38] Combining iterative slow feature analysis and deep feature learning for change detection in high-resolution remote sensing images
    Xu, Junfeng
    Zhang, Baoming
    Guo, Haitao
    Lu, Jun
    Lin, Yuzhun
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (02)
  • [39] AUTOMATED CHANGE DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES
    Ehlers, Manfred
    Klonus, Sascha
    Tomowski, Daniel
    Michel, Ulrich
    Reinartz, Peter
    GEOSPATIAL DATA AND GEOVISUALIZATION: ENVIRONMENT, SECURITY, AND SOCIETY, 2010, 38
  • [40] AFSNet: attention-guided full-scale feature aggregation network for high-resolution remote sensing image change detection
    Jiang, Ming
    Zhang, Xinchang
    Sun, Ying
    Feng, Weiming
    Gan, Qiao
    Ruan, Yongjian
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 1882 - 1900