Knowledge graph embedding based on embedding permutation and high-frequency feature fusion for link prediction

被引:0
|
作者
Yu, Qien [1 ]
Vargas, Danilo Vasconcellos [1 ]
机构
[1] Kyushu Univ, Dept Informat Sci & Technol, 744 Motooka,Nishi Ku, Fukuoka 8190395, Japan
关键词
Knowledge graph embedding; Link prediction; Feature fusion; Convolutional neural network; Embedding permutation; Projection attention; NETWORK;
D O I
10.1016/j.neucom.2025.129743
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph embedding has excellent performance in capturing intrinsic relations and semantics in a wealth of information for link prediction. Knowledge graph embedding methods have achieved impressive results in recent years, especially those using convolutional neural networks. However, many previous approaches focus on interactions between relations and entities, ignoring interactions of internal data elements and the crucial role of high-frequency features. In this paper, we propose a novel approach, a knowledge graph Embedding model using 2D convolution operations integrating Embedding permutation strategy and High-frequency features fusion mechanism, named EHE, for link prediction. First, we design the embedding permutation mechanism for the embedding vectors. This mechanism leverages internal element permutation, efficiently broadening the local interactions of internal elements, especially for far-flung data elements in the one-dimensional space. Subsequently, a high-frequency feature fusion module is proposed to capture the high-frequency feature representations by using Sobel and Laplacian operators. Additionally, the projection attention mechanism is utilized to emphasize the unique semantic regions of interest in entities and relations. We assess our approach on several benchmark link prediction datasets. Considering the important metrics, MRR and H@1, our method achieves the overall best performance compared with existing state-of-the-art methods on five public datasets, showcasing its superior capacity for link prediction.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Knowledge graph embedding for data mining vs. knowledge graph embedding for link prediction - two sides of the same coin?
    Portisch, Jan
    Heist, Nicolas
    Paulheim, Heiko
    SEMANTIC WEB, 2022, 13 (03) : 399 - 422
  • [22] Dual Graph Embedding for Object-Tag Link Prediction on the Knowledge Graph
    Li, Chenyang
    Chen, Xu
    Zhang, Ya
    Chen, Siheng
    Lv, Dan
    Wang, Yanfeng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 283 - 290
  • [23] Open Knowledge Graph Link Prediction with Semantic-Aware Embedding
    Wang, Jingbin
    Huang, Hao
    Wu, Yuwei
    Zhang, Fuyuan
    Zhang, Sirui
    Guo, Kun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [24] Hyperbolic Hierarchy-Aware Knowledge Graph Embedding for Link Prediction
    Pan, Zhe
    Wang, Peng
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 2941 - 2948
  • [25] Comprehensive Analysis of Knowledge Graph Embedding Techniques Benchmarked on Link Prediction
    Ferrari, Ilaria
    Frisoni, Giacomo
    Italiani, Paolo
    Moro, Gianluca
    Sartori, Claudio
    ELECTRONICS, 2022, 11 (23)
  • [26] Knowledge graph embedding by relational rotation and complex convolution for link prediction
    Thanh Le
    Nam Le
    Bac Le
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214
  • [27] Knowledge graph embedding by translating in time domain space for link prediction
    Zhang, Qianjin
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [28] BTDE: Block Term Decomposition Embedding for Link Prediction in Knowledge Graph
    Luo, Tao
    Wei, Yifan
    Yu, Mei
    Li, Xuewei
    Zhao, Mankun
    Xu, Tianyi
    Yu, Jian
    Gao, Jie
    Yu, Ruiguo
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 817 - 824
  • [29] Graph Embedding Method Based on Biased Walking for Link Prediction
    Nie, Mingshuo
    Chen, Dongming
    Wang, Dongqi
    MATHEMATICS, 2022, 10 (20)
  • [30] Link Prediction Based on Graph Embedding Method in Unweighted Networks
    Wu, Chencheng
    Zhou, Yinzuo
    Tan, Lulu
    Teng, Cong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 736 - 741