Rapid identification of milk powder adulteration based on surface-enhanced Raman spectroscopy

被引:0
|
作者
Chen, Jian [1 ]
Liu, Wei [1 ]
Cao, Xiaoyu [1 ]
Zhang, Qian [1 ]
Zou, Xuan [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Food Sci & Engn, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
NEAR-INFRARED SPECTROSCOPY; MELAMINE DETECTION; SCATTERING;
D O I
10.1063/5.0228449
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, milk powder adulteration has emerged as a matter of great concern. In this study, a rapid, accurate, and efficient detection method based on surface-enhanced Raman spectroscopy (SERS) combined with principal component analysis (PCA) was established to detect milk powder adulteration. The "coffee ring" effect-based gold nanoparticles (Au NPs) as the SERS-enhancing substrate were coupled with a portable Raman spectrometer, which enabled the differentiation of various brands of milk powder and the detection of melamine in milk powder. The substrate exhibited good SERS enhancement ability with an enhancement factor of 104. Furthermore, a strong linear correlation with a correlation coefficient (R2) of 0.9903 was observed between the melamine Raman intensity and concentration from 0.5 to 5.0 mg/kg. The calculated limit of detection of melamine (LOD) was 0.15 mg/kg, while the limit of quantitation (LOQ) was 0.5 mg/kg. In addition, when the method was applied to the detection of melamine in milk powder samples, this method achieved the recovery rates of melamine in milk powder samples ranged from 92.83% to 98.86% with relative standard deviations between 0.84% and 1.14%. In summary, the established method offers the advantages of cost-effectiveness, less sample requirement, and shorter detection time, meeting the needs for milk powder classification and rapid melamine detection.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Surface-enhanced Raman spectroscopy
    Han, Xiao Xia
    Rodriguez, Rebeca S.
    Haynes, Christy L.
    Ozaki, Yukihiro
    Zhao, Bing
    NATURE REVIEWS METHODS PRIMERS, 2022, 1 (01):
  • [32] Surface-enhanced Raman spectroscopy
    Xiao Xia Han
    Rebeca S. Rodriguez
    Christy L. Haynes
    Yukihiro Ozaki
    Bing Zhao
    Nature Reviews Methods Primers, 1
  • [33] Surface-enhanced Raman spectroscopy
    Haynes, CL
    McFarland, AD
    Van Duyne, RP
    ANALYTICAL CHEMISTRY, 2005, 77 (17) : 338A - 346A
  • [34] Surface-enhanced Raman Spectroscopy
    Nishino, Tomoaki
    ANALYTICAL SCIENCES, 2018, 34 (09) : 1061 - 1062
  • [35] Surface-enhanced Raman spectroscopy
    Popp, Juergen
    Mayerhoefer, Thomas
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 394 (07) : 1717 - 1718
  • [36] Rapid analysis of foodborne pathogens by surface-enhanced Raman spectroscopy
    Sengupta, Atanu
    Shende, Chetan
    Huang, Hermes
    Farquharson, Stuart
    Inscore, Frank
    SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY IV, 2012, 8369
  • [37] Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy
    Zhang, XY
    Young, MA
    Lyandres, O
    Van Duyne, RP
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (12) : 4484 - 4489
  • [38] Rapid identification method of milk powder from different animals based on Raman spectroscopy
    Zhang, Xinyue
    Yang, Qiaoling
    Gu, Shuqing
    Yu, Yongai
    Deng, Xiaojun
    Niu, Bing
    Chen, Qin
    JOURNAL OF DAIRY SCIENCE, 2025, 108 (01) : 136 - 151
  • [39] Rapid detection of milk powder adulteration based on NIR spectroscopy and chemometric analysis
    Yakes, Betsy
    He, Keqin
    Karunathilaka, Sanjeewa
    Chung, Jin Kyu
    Michael, Tara
    Mossoba, Magdi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [40] Rapid single-cell detection and identification of bacteria by using surface-enhanced Raman spectroscopy
    Dina, Nicoleta Elena
    Colnita, Alia
    Leopold, Nicolae
    Haisch, Christoph
    BIOSENSORS 2016, 2017, 27 : 203 - 207