GENERALIZED TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS

被引:0
|
作者
Basit, Abdul [1 ,2 ]
Galvin, David [3 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Monash Univ, Melbourne, Australia
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46656 USA
关键词
Tuza's conjecture; random hypergraph; matching and covering; TRIANGLES; PACKING; BOUNDS;
D O I
10.1137/23M1587014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A celebrated conjecture of Tuza states that in any finite graph the minimum size of a cover of triangles by edges is at most twice the maximum size of a set of edge-disjoint triangles. For an r-uniform hypergraph (r-graph) G , let \tau(G) be the minimum size of a cover of edges by (r- 1)- sets of vertices, and let v ( G ) be the maximum size of a set of edges pairwise intersecting in fewer than r- 1 vertices. Aharoni and Zerbib proposed the following generalization of Tuza's conjecture: For any r-graph G , \tau(G)/v(G) \leq [(r + 1)/21. Let Hr(n,p) be the uniformly random r-graph on n vertices. We show that for r \in {3, 4, 5\} and any p = p ( n ), Hr(n, p ) satisfies the Aharoni-Zerbib conjecture with high probability (w.h.p.), i.e., with probability approaching 1 as n- oo. We also show that there is a C < 1 such that for any r \geq 6 and any p = p ( n ), \tau(Hr(n,p))/v(Hr(n,p)) \leq Cr w.h.p. Furthermore, we may take C < 1/2 + \varepsilon, for any \varepsilon > 0, by restricting to sufficiently large r (depending on \varepsilon).
引用
收藏
页码:2260 / 2288
页数:29
相关论文
共 50 条
  • [41] Thomassen's conjecture for line graphs of 3-hypergraphs
    Li, Binlong
    Ozeki, Kenta
    Ryjacek, Zdenek
    Vrana, Petr
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [42] A Note on a Conjecture on Niche Hypergraphs
    Kaemawichanurat, Pawaton
    Jiarasuksakun, Thiradet
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (01) : 93 - 97
  • [43] A Note on a Conjecture on Niche Hypergraphs
    Pawaton Kaemawichanurat
    Thiradet Jiarasuksakun
    Czechoslovak Mathematical Journal, 2019, 69 : 93 - 97
  • [44] Random hypergraphs
    Karonski, M
    Luczak, T
    COMBINATORICS, PAUL ERDOS IS EIGHTY, VOL. 2, 1996, 2 : 283 - 293
  • [45] The Bollobás-Thomason conjecture for 3-uniform hypergraphs
    John Haslegrave
    Combinatorica, 2012, 32 : 451 - 471
  • [46] On a generalized Batyrev’s cone conjecture
    Sung Rak Choi
    Yoshinori Gongyo
    Mathematische Zeitschrift, 2022, 300 : 1319 - 1334
  • [47] A random analogue of Gilbreath’s conjecture
    Zachary Chase
    Mathematische Annalen, 2024, 388 : 2611 - 2625
  • [48] A NOTE ON VIZING'S GENERALIZED CONJECTURE
    Blidia, Mostafa
    Chellali, Mustapha
    OPUSCULA MATHEMATICA, 2007, 27 (02) : 181 - 185
  • [49] On a generalized Batyrev's cone conjecture
    Choi, Sung Rak
    Gongyo, Yoshinori
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (02) : 1319 - 1334
  • [50] A random analogue of Gilbreath's conjecture
    Chase, Zachary
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2611 - 2625