Fundamental Limits of Feedback Cooling Ultracold Atomic Gases

被引:0
|
作者
Mehdi, Zain [1 ]
Haine, Simon A.
Hope, Joseph J.
Szigeti, Stuart S.
机构
[1] Australian Natl Univ, Res Sch Phys, Dept Quantum Sci & Technol, Canberra 2600, Australia
基金
澳大利亚研究理事会;
关键词
NETWORKS;
D O I
10.1103/PhysRevLett.133.073401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the fundamental viability of cooling ultracold atomic gases with quantum feedback control. Our Letter shows that the trade-off between the resolution and destructiveness of optical imaging techniques imposes constraints on the efficacy of feedback cooling, and that rapid rethermalization is necessary for cooling thermal gases. We construct a simple model to determine the limits to feedback cooling set by the visibility of density fluctuations, measurement-induced heating, and three-body atomic recombination. We demonstrate that feedback control can rapidly cool high-temperature thermal clouds in quasi-2D geometries to degenerate temperatures with minimal atom loss compared to traditional evaporation. Our analysis confirms the feasibility of feedback cooling ultracold atomic gases, providing a pathway to new regimes of cooling not achievable with current approaches.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Recent experiments with ultracold quantum-degenerate atomic gases
    Schneble, Dominik
    PHYSICA SCRIPTA, 2004, T112 : 48 - 51
  • [42] Strong correlations in quantum vortex nucleation of ultracold atomic gases
    Nunnenkamp, Andreas
    Rey, Ana Maria
    Burnett, Keith
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2117): : 1247 - 1263
  • [43] Quantum information entropies of ultracold atomic gases in a harmonic trap
    TUTUL BISWAS
    TARUN KANTI GHOSH
    Pramana, 2011, 77 : 697 - 705
  • [44] Superfluidity of Bose-Einstein condensates in ultracold atomic gases
    Zhu Qi-Zhong
    Wu Biao
    CHINESE PHYSICS B, 2015, 24 (05)
  • [45] Simulation of the magnetoresistance of ultracold atomic Bose gases in bichromatic lattices
    Towers, J.
    Cormack, S. C.
    Hutchinson, D. A. W.
    PHYSICAL REVIEW A, 2013, 88 (04)
  • [46] Ultracold atomic Bose and Fermi spinor gases in optical lattices
    Eckert, K.
    Zawitkowski, L.
    Leskinen, M. J.
    Sanpera, A.
    Lewenstein, M.
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [47] Z2 Topological Insulators in Ultracold Atomic Gases
    Beri, B.
    Cooper, N. R.
    PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [48] Quantifying, characterizing, and controlling information flow in ultracold atomic gases
    Haikka, P.
    McEndoo, S.
    De Chiara, G.
    Palma, G. M.
    Maniscalco, S.
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [49] Topological Interface Engineering and Defect Crossing in Ultracold Atomic Gases
    Borgh, Magnus O.
    Ruostekoski, Janne
    PHYSICAL REVIEW LETTERS, 2012, 109 (01)
  • [50] Dressed molecules in resonantly interacting ultracold atomic Fermi gases
    Falco, G. M.
    Stoof, H. T. C.
    PHYSICAL REVIEW A, 2007, 75 (02):