Multiple Contrastive Experts for long-tailed image classification

被引:1
|
作者
Wang, Yandan [1 ]
Sun, Kaiyin [1 ]
Guo, Chenqi [1 ]
Zhong, Shiwei [1 ]
Liu, Huili [1 ]
Ma, Yinglong [1 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
关键词
Long-tailed image classification; Loosely coupled ensemble model; Multiple contrastive experts; Supervised contrastive learning;
D O I
10.1016/j.eswa.2024.124613
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-world image classification data usually exhibits a challenging long-tailed distribution, attributed to the inherent difficulty in data collection. Existing ensemble approaches predominantly prioritize the empirical diversification of the ensemble model, sidelining its critical aspects of representation ability. A noticeable gap also exists in theoretical analysis elucidating the intricate relationship between ensemble model diversity and its generalization efficacy. This paper introduces a loosely coupled ensemble framework, Multiple Contrastive Experts (MCE) tailored for long-tailed image classification, aiming to bolster image representation while ensuring diversity within the proposed MCE. Leveraging skill-diverse classification losses, the experts in the ensemble model are able to specialize in different kinds of classes in the long-tailed distribution. An adapted supervised contrastive learning (SCL) loss is introduced to guide training for each feature learning branch to enhance the representation ability of MCE. Through the effective integration of the different losses from all experts, each expert model can be optimized coordinately. Moreover, the relationship between the generalization ability of MCE and its diversity is theoretically revealed against a single classification model. At last, extensive experiments were made over five widely used long-tailed image classification datasets. The results show that our proposed MCE is very competitive against the state-of-the-art methods, while maintaining a relatively lower computational cost. Besides, MCE has also exhibited superior performance with an increasing number of experts.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Distributionally Robust Loss for Long-Tailed Multi-label Image Classification
    Lin, Dekun
    Peng, Tailai
    Chen, Rui
    Xie, Xinran
    Qin, Xiaolin
    Cui, Zhe
    COMPUTER VISION - ECCV 2024, PT XXXIII, 2025, 15091 : 417 - 433
  • [42] Effect of Stage Training for Long-Tailed Multi-Label Image Classification
    Yamagishi, Yosuke
    Hanaoka, Shohei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2713 - 2720
  • [43] A knowledge-guide hierarchical learning method for long-tailed image classification
    Chen, Qiong
    Liu, Qingfa
    Lin, Enlu
    NEUROCOMPUTING, 2021, 459 : 408 - 418
  • [44] Inverse Image Frequency for Long-Tailed Image Recognition
    Alexandridis, Konstantinos Panagiotis
    Luo, Shan
    Nguyen, Anh
    Deng, Jiankang
    Zafeiriou, Stefanos
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5721 - 5736
  • [45] Addressing long-tailed distribution in judicial text for criminal motive classification: a balanced contrastive learning approach
    Li, Ting
    Mi, Lewen
    Meng, Xiangyu
    Jia, Yongju
    Zhao, Lin
    Zhao, Qi
    Wei, Zihao
    Gao, Guandong
    Li, Xiangxian
    EPJ DATA SCIENCE, 2025, 14 (01)
  • [46] Contrastive dual-branch network for long-tailed visual recognition
    Miao, Jie
    Zhai, Junhai
    Han, Ling
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [47] Rebalanced supervised contrastive learning with prototypes for long-tailed visual recognition
    Chang, Xuhui
    Zhai, Junhai
    Qiu, Shaoxin
    Sun, Zhengrong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2025, 252
  • [48] Feature channel interaction long-tailed image classification model based on dual attention
    Liao, Kaiyang
    Wang, Keer
    Zheng, Yuanlin
    Lin, Guangfeng
    Cao, Congjun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1661 - 1670
  • [49] Feature channel interaction long-tailed image classification model based on dual attention
    Kaiyang Liao
    Keer Wang
    Yuanlin Zheng
    Guangfeng Lin
    Congjun Cao
    Signal, Image and Video Processing, 2024, 18 : 1661 - 1670
  • [50] Cross-modal learning using privileged information for long-tailed image classification
    Li, Xiangxian
    Zheng, Yuze
    Ma, Haokai
    Qi, Zhuang
    Meng, Xiangxu
    Meng, Lei
    COMPUTATIONAL VISUAL MEDIA, 2024, 10 (05) : 981 - 992