Optimization;
Reconfigurable intelligent surfaces;
Array signal processing;
Downlink;
Channel estimation;
Wireless sensor networks;
Communication systems;
Deep reinforcement learning (DRL);
machine learning (ML);
reconfigurable intelligent surface (RIS);
LARGE INTELLIGENT SURFACES;
REINFORCEMENT;
D O I:
10.1109/JSEN.2024.3440849
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Reconfigurable intelligent surface (RIS) can offer a customizable wireless transmission and is regarded as an incredibly crucial enabling technology when used as reflectors for current wireless base stations (BSs) to overcome the blockage challenges of millimeter-wave (mmWave) wireless communications systems. RISs are instrumental in driving the progress of sixth-generation (6G) wireless services and beyond, with the goal of achieving gigabit-per-second (Gbps) data rates for networks operating in the mmWave frequency bands. RIS has the significant potential to diminish the effects of signal blockages and unnecessary handovers because precise phase adjustment of RIS elements enhances the scattering environments and creates multiple reflective signal paths. However, the large number of RIS elements can complicate the optimization of BS and RIS reflector configurations and result in performance degradation. This article introduces a deep reinforcement learning (DRL) strategy to dynamically configure the numerous RIS elements for multiuser downlink transmissions. The proposed method employs the twin-delayed deep deterministic policy gradient (TD3) method to solve nonconvex optimization issues where the BS receives state information from the RIS, including feedback on user channel states. For real-world systems requiring collaborative control over phase shift and beamforming matrix, the BS determines the optimal actions, which comprise the allocation of transmission power and phase shift adjustments within a Nakagami-m fading environment. The experimental results indicate that the proposed TD3-based solution outperforms other existing benchmarks.
机构:
Luoyang Normal Univ, Sch Phys & Elect Informat, Luoyang 471934, Peoples R China
Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R ChinaLuoyang Normal Univ, Sch Phys & Elect Informat, Luoyang 471934, Peoples R China
Gao, Ya
Lu, Chengzhuang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R ChinaLuoyang Normal Univ, Sch Phys & Elect Informat, Luoyang 471934, Peoples R China
Lu, Chengzhuang
Lian, Yuhang
论文数: 0引用数: 0
h-index: 0
机构:
Luoyang Normal Univ, Sch Phys & Elect Informat, Luoyang 471934, Peoples R ChinaLuoyang Normal Univ, Sch Phys & Elect Informat, Luoyang 471934, Peoples R China
Lian, Yuhang
Li, Xingwang
论文数: 0引用数: 0
h-index: 0
机构:
Henan Polytech Univ, Sch Phys & Elect Informat Engn, Jiaozuo 454150, Peoples R ChinaLuoyang Normal Univ, Sch Phys & Elect Informat, Luoyang 471934, Peoples R China
Li, Xingwang
Chen, Gaojie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Surrey, Inst Commun Syst ICS 5GIC & 6GIC, Guildford GU2 7XH, EnglandLuoyang Normal Univ, Sch Phys & Elect Informat, Luoyang 471934, Peoples R China
Chen, Gaojie
da Costa, Daniel Benevides
论文数: 0引用数: 0
h-index: 0
机构:
Technol Innovat Inst, Digital Sci Res Ctr, Masdar City 9639, U Arab EmiratesLuoyang Normal Univ, Sch Phys & Elect Informat, Luoyang 471934, Peoples R China
da Costa, Daniel Benevides
Nallanathan, Arumugam
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, EnglandLuoyang Normal Univ, Sch Phys & Elect Informat, Luoyang 471934, Peoples R China
机构:
Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450000, Peoples R ChinaZhengzhou Univ, Sch Informat Engn, Zhengzhou 450000, Peoples R China
Guo, Yabo
Sun, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450000, Peoples R ChinaZhengzhou Univ, Sch Informat Engn, Zhengzhou 450000, Peoples R China
Sun, Peng
Yuan, Zhengdao
论文数: 0引用数: 0
h-index: 0
机构:
Open Univ Henan, Artificial Intelligence Technol Engn Res Ctr, Zhengzhou 450000, Peoples R ChinaZhengzhou Univ, Sch Informat Engn, Zhengzhou 450000, Peoples R China
机构:
Khalifa Univ Sci & Technol, KU 6G Res Ctr, Abu Dhabi, U Arab EmiratesZhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China