Steady-state Superconducting Advanced Spherical Tokamak Reactor (SASTR)

被引:0
|
作者
Nagayama, Yoshio [1 ]
Fujita, Takaaki [2 ]
机构
[1] Natl Inst Fus Sci, Toki, Japan
[2] Nagoya Univ, Nagoya, Japan
关键词
Power reactor; Advanced ST; Bootstrap current; Steady state; Superconducting; ITB; SASTR; HIGH-PERFORMANCE; TRANSPORT; PHYSICS; SHEAR; PLASMAS; LIMITS;
D O I
10.1016/j.fusengdes.2025.114900
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A concept for a Steady-state Superconducting Advanced Spherical Tokamak Reactor (SASTR) with a slim-CS is proposed. This is a spherical tokamak (ST) with an internal transport barrier (ITB) and superconducting magnets. The ITB allows for sufficient bootstrap (BS) current to sustain the plasma. The feasibility of a self-sustained SASTR is investigated by using a set of plasma burning equations. We find that the toroidal magnetic field and the confinement enhancement factor are key parameters to meet the beta limit and density limit criteria, respectively. We estimate the dependence of the cost of electricity (COE) on the aspect ratio and reactor size. We present a conceptual design of a 0.8 GWe SASTR power reactor with a major radius of 4.5 m, an aspect ratio of 1.8, a toroidal field of 2.67 T generated by Nb3Sn superconducting magnets, and a plasma current of 24.5 MA driven fully by the BS current.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A PROPOSAL FOR A MATERIAL IRRADIATION TEST REACTOR BASED ON A STEADY-STATE SUBIGNITED TOKAMAK PLASMA
    OGAWA, Y
    INOUE, N
    OKANO, K
    FUSION TECHNOLOGY, 1994, 26 (02): : 168 - 178
  • [32] New Steady-State Quiescent High-Confinement Plasma in an Experimental Advanced Superconducting Tokamak (vol 114, 055001, 2015)
    Hu, J. S.
    Sun, Z.
    Guo, H. Y.
    Li, J. G.
    Wan, B. N.
    Wang, H. Q.
    Ding, S. Y.
    Xu, G. S.
    Liang, Y. F.
    Mansfield, D. K.
    Maingi, R.
    Zou, X. L.
    Wang, L.
    Ren, J.
    Zuo, G. Z.
    Zhang, L.
    Duan, Y. M.
    Shi, T. H.
    Hu, L. Q.
    PHYSICAL REVIEW LETTERS, 2015, 115 (16)
  • [33] Steady-state tokamak research: Core physics
    Kikuchi, M.
    Azumi, M.
    REVIEWS OF MODERN PHYSICS, 2012, 84 (04) : 1807 - 1854
  • [34] CONCEPTUAL DESIGN OF RST STEADY-STATE TOKAMAK
    PRATER, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 856 - 856
  • [35] MAGNETIC-SURFACES IN A STEADY-STATE TOKAMAK
    KINNEY, R
    TAJIMA, T
    IRIE, H
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (01): : 118 - 124
  • [36] ON THE STEADY-STATE STABILITY OF A SUPERCONDUCTING TURBOGENERATOR
    LUPKIN, VM
    ELECTRICAL TECHNOLOGY, 1986, (04): : 20 - 27
  • [37] Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX
    Doyle, E. J.
    Garofalo, A. M.
    Greenfield, C. M.
    Kaye, S. M.
    Menard, J. E.
    Murakami, M.
    Sabbagh, S. A.
    Austin, M. E.
    Bell, R. E.
    Burrell, K. H.
    Ferron, J. R.
    Gates, D. A.
    Groebner, R. J.
    Hyatt, A. W.
    Jayakumar, R. J.
    Kinsey, J. E.
    LeBlanc, B. P.
    Luce, T. C.
    McKee, G. R.
    Okabayashi, M.
    Peng, Y-K M.
    Petty, C. C.
    Politzer, P. A.
    Rhodes, T. L.
    Wade, M. R.
    Waltz, R. E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (12B) : B39 - B52
  • [38] STEADY-STATE REACTOR WITH NEOCLASSICAL PITS
    COMUCCI, C
    TESSAROTTO, M
    LETTERE AL NUOVO CIMENTO, 1976, 17 (07): : 225 - 230
  • [39] Overview of JT-60U progress towards steady-state advanced tokamak
    Ide, S
    NUCLEAR FUSION, 2005, 45 (10) : S48 - S62
  • [40] STEADY-STATE SPHEROMAK REACTOR STUDIES
    HAGENSON, RL
    KRAKOWSKI, RA
    FUSION TECHNOLOGY, 1985, 8 (01): : 1606 - 1612