ML-based calibration and control of the GlueX Central Drift Chamber

被引:0
|
作者
Britton, T. [1 ]
Goodrich, M. [1 ]
Jarvis, N. [2 ]
Jeske, T. [1 ]
Kalra, N. [1 ]
Lawrence, D. [1 ]
Mcspadden, D. [1 ]
Rajput, K. [1 ]
机构
[1] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA USA
来源
JOURNAL OF INSTRUMENTATION | 2024年 / 19卷 / 11期
关键词
dE/dx detectors; Detector control systems (detector and experiment monitoring and slow-control systems; architecture; hardware; algorithms; databases); Particle tracking detectors; Particle tracking detectors (Gaseous detectors);
D O I
10.1088/1748-0221/19/11/C11012
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The GlueX Central Drift Chamber (CDC) in Hall D at Jefferson Lab, used for detecting and tracking charged particles, is calibrated and controlled during data taking using a Gaussian process. The system dynamically adjusts the high voltage applied to the anode wires inside the chamber in response to changing environmental and experimental conditions such that the gain is stabilized. Control policies have been established to manage the CDC's behavior. These policies are activated when the model's uncertainty exceeds a configurable threshold or during human-initiated tests during normal production running. We demonstrate the system reduces the time detector experts dedicate to calibration of the data offline, leading to a marked decrease in computing resource usage without compromising detector performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] ML-Based Maintenance and Control Process Analysis, Simulation, and Automation-A Review
    Rojek, Izabela
    Mikolajewski, Dariusz
    Dostatni, Ewa
    Piszcz, Adrianna
    Galas, Krzysztof
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [22] ML-based Admission Control of Cloud Services: Centralized versus Distributed Approaches
    Bashar, Abul
    2018 TWENTY FOURTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2018,
  • [23] ML-based Demand Forecast with External Factors
    Hellmers López D.
    Julia Kramer K.
    Schmidt M.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2023, 118 (05): : 324 - 329
  • [24] ML-Based Teaching Systems: A Conceptual Framework
    Spitzer P.
    Kühl N.
    Heinz D.
    Satzger G.
    Proceedings of the ACM on Human-Computer Interaction, 2023, 7 (CSCW2)
  • [25] Calibration of CMD-2 drift chamber
    Budker Inst of Nuclear Physics, Novosibirsk, Russia
    Nucl Instrum Methods Phys Res Sect A, 3 (432-433):
  • [26] Calibration of CMD-2 drift chamber
    Anashkin, EV
    Chernyak, DV
    Fedotovich, GV
    Khazin, BI
    Lukin, PA
    Maksimov, AV
    Ruban, AA
    Snopkov, IG
    Solodov, EP
    Zavarzin, VG
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1996, 379 (03): : 432 - 433
  • [27] ML-based Expert Products Scoring System
    Mendori, Patryk
    Pelc, Mariusz
    Kawala-Sterniuk, Aleksandra
    Gola, Mariusz
    2024 PROGRESS IN APPLIED ELECTRICAL ENGINEERING, PAEE 2024, 2024,
  • [28] ML-based EDA from Research to Production
    Liu, Wen-Hao
    Ren, Haoxing
    2024 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI TSA, 2024,
  • [29] Robustify ML-Based Lithography Hotspot Detectors
    Pan, Jingyu
    Chang, Chen-Chia
    Xie, Zhiyao
    Hu, Jiang
    Chen, Yiran
    2022 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2022,
  • [30] ML-Based Early Detection of IoT Botnets
    Kumar, Ayush
    Shridhar, Mrinalini
    Swaminathan, Sahithya
    Lim, Teng Joon
    SECURITY AND PRIVACY IN COMMUNICATION NETWORKS (SECURECOMM 2020), PT II, 2020, 336 : 254 - 260