Magnesium-based nanocomposites for orthopedic applications: A review

被引:0
|
作者
Cheng, Meng [1 ]
Liang, Xigang [3 ]
Cui, Lihua [3 ]
Guan, Dongyan [2 ]
Qu, Yang [1 ]
Zhao, Jianwu [1 ]
Guan, Kai [4 ,5 ,6 ]
机构
[1] Second Hosp Jilin Univ, Dept Orthoped, Changchun 130014, Jilin, Peoples R China
[2] Liangshan Peoples Hosp, Dept Operating Theatre, Liangshan 272600, Shandong, Peoples R China
[3] Binzhou Peoples Hosp, Dept Orthoped, Binzhou 256610, Shandong, Peoples R China
[4] Jilin Univ, Minist Educ, Key Lab Automobile Mat, Changchun, Jilin, Peoples R China
[5] Jilin Univ, Sch Mat Sci & Engn, Changchun, Jilin, Peoples R China
[6] Jilin Univ, Int Ctr Future Sci, Changchun 130025, Jilin, Peoples R China
关键词
Magnesium-based nanocomposite; Strengthening strategy; Mg 2 +; Biodegradable material; Osteogenesis; MECHANICAL-PROPERTIES; IN-VIVO; ALLOYS; COMPOSITES; IMPLANTS; MICROSTRUCTURE; OPTIMIZATION; DEGRADATION; PARTICLES; CORROSION;
D O I
10.1016/j.jma.2024.11.028
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Mg-based materials have potential applications in the field of orthopedics owing to their good biodegradability, biocompatibility, and boneinducing properties. However, during the early application process, their major drawback was rapid degradation rate, which limited their clinical application. Nanoparticles can effectively reinforce the mechanical strength and corrosion resistance of Mg matrices, and different nanoparticles can be selected to achieve different biological functions. Therefore, Mg-based nanocomposites have emerged as a versatile class of degradable implant materials with broad clinical potential. This review summarizes the research progress of Mg-based orthopedic implants, mainly including the reinforcement mechanism of nanoparticles on Mg-based materials, the effects and biological functions of different nanoparticle enhancers, surface modification, and the application of new manufacturing technologies. Furthermore, the degradation process of Mg-based materials and the biological functions of magnesium ion (Mg2 + ) during the degradation process are discussed in detail. We focused on the biological mechanisms through which Mg2 + promotes bone and vascular formation and inhibits osteoclasts by regulating the immune microenvironment or multiple signaling pathways. Finally, the clinical application of Mg-based orthopedic implants are introduced and the future research directions of Mg-based nanocomposites are discussed. (c) 2024 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University
引用
收藏
页码:4335 / 4362
页数:28
相关论文
共 50 条
  • [21] Fabrication and characterization of magnesium-based nanocomposites reinforced with Baghdadite and carbon nanotubes for orthopaedical applications
    Ansari, Mojtaba
    Mahdavikia, Shiva
    Eslami, Hossein
    Saghalaini, Mozhdeh
    Taghipour, Hamid
    Zare, Fatemeh
    Shirani, Shahin
    Roknabadi, Mohammad Hossein Alizadeh
    JOURNAL OF MAGNESIUM AND ALLOYS, 2024, 12 (12) : 5144 - 5163
  • [22] Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives
    Shahin, Mohammad
    Munir, Khurram
    Wen, Cuie
    Li, Yuncang
    ACTA BIOMATERIALIA, 2019, 96 : 1 - 19
  • [23] MXenes for magnesium-based hydrides: A review
    Bolarin, Joshua Adedeji
    Zou, Ren
    Li, Zhi
    Zhang, Zhao
    Cao, Hujun
    APPLIED MATERIALS TODAY, 2022, 29
  • [24] Magnesium-based Biodegradable Materials for Biomedical Applications
    Chaoxing Zhang
    Jiajia Lin
    Huinan Liu
    MRS Advances, 2018, 3 (40) : 2359 - 2364
  • [25] Investigation of magnesium-based alloys for biomedical applications
    Vojtech, D.
    Cizova, H.
    Volenec, K.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2006, 44 (04): : 211 - 223
  • [26] Systems, Properties, Surface Modification and Applications of Biodegradable Magnesium-Based Alloys: A Review
    Chen, Junxiu
    Xu, Yu
    Kolawole, Sharafadeen Kunle
    Wang, Jianhua
    Su, Xuping
    Tan, Lili
    Yang, Ke
    MATERIALS, 2022, 15 (14)
  • [27] Magnesium-based alloys for solid-state hydrogen storage applications: A review
    Hitam, C. N. C.
    Aziz, M. A. A.
    Ruhaimi, A. H.
    Taib, M. R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (60) : 31067 - 31083
  • [28] Research of Magnesium-based Alloys for Medical Applications
    Cheng Jingtao
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY AND INFORMATION SYSTEM (ICETIS 2014), 2014, 115 : 631 - 635
  • [29] Magnesium-based Biodegradable Materials for Biomedical Applications
    Zhang, Chaoxing
    Lin, Jiajia
    Liu, Huinan
    MRS ADVANCES, 2018, 3 (40): : 2359 - 2364
  • [30] Applications of Biodegradable Magnesium-Based Materials in Reconstructive Oral and Maxillofacial Surgery: A Review
    Vujovic, Sanja
    Desnica, Jana
    Stanisic, Dragana
    Ognjanovic, Irena
    Stevanovic, Momir
    Rosic, Gvozden
    MOLECULES, 2022, 27 (17):