Closely Cooperative Multi-Agent Reinforcement Learning Based on Intention Sharing and Credit Assignment

被引:0
|
作者
Fu, Hao [1 ,2 ]
You, Mingyu [1 ,2 ]
Zhou, Hongjun [1 ,2 ]
He, Bin [1 ,2 ]
机构
[1] Tongji Univ, Shanghai Res Inst Intelligent Autonomous Syst, Coll Elect & Informat Engn, Shanghai 200070, Peoples R China
[2] Frontiers Sci Ctr Intelligent Autonomous Syst, State Key Lab Intelligent Autonomous Syst, Shanghai Key Lab Intelligent Autonomous Syst, Shanghai 201203, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Reinforcement learning; Collaboration; Encoding; Training; Multi-agent systems; Autonomous systems; Mutual information; Decision making; Trajectory; Synchronization; MARL; closely collaborative tasks; intention sharing; credit assignment;
D O I
10.1109/LRA.2024.3497661
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Collaborative tasks are important in multi-agent systems. Multi-agent reinforcement learning is a commonly used technique for solving multi-agent cooperative policy learning. The closely collaborative task is a special but common case within cooperative tasks, where the change in the environmental state requires multiple agents to simultaneously perform specific actions. For example, in a box-pushing task where the boxes are heavy and require multiple agents to push simultaneously. The closely cooperative task faces some unique challenges. Firstly, the completion of a closely collaborative task requires agents to synchronize their actions, necessitating a consistent intention among them. Secondly, when some agents' erroneous actions lead to task failure, it becomes a challenge to avoid incorrectly penalizing agents who performed the correct actions. These challenges make most of the existing MARL methods perform poorly on this task. In this letter, we propose a closely collaborative multi-agent reinforcement learning(CC-MARL) algorithm based on intention sharing and credit assignment. We use a two-phase training to learn intention encoding and intention sharing respectively, and decompose joint action values based on counterfactual baseline ideas. We deployed scenarios in both simulated and real environments with various sizes, numbers of boxes, and numbers of agents and compare CC-MARL with various classical MARL algorithms on box-pushing tasks of different map scales in simulation, demonstrating the state-of-the-art of our method.
引用
收藏
页码:11770 / 11777
页数:8
相关论文
共 50 条
  • [21] Cooperative task assignment in spatial crowdsourcing via multi-agent deep reinforcement learning?
    Zhao, Pengcheng
    Li, Xiang
    Gao, Shang
    Wei, Xiaohui
    JOURNAL OF SYSTEMS ARCHITECTURE, 2022, 128
  • [22] Cooperative Multi-Agent Reinforcement Learning with Dynamic Target Localization: A Reward Sharing Approach
    Wickramaarachchi, Helani
    Kirley, Michael
    Geard, Nicholas
    ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT II, 2024, 14472 : 310 - 324
  • [23] Sharing of Energy Among Cooperative Households Using Distributed Multi-Agent Reinforcement Learning
    Ebell, Niklas
    Guetlein, Moritz
    Pruckner, Marco
    PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,
  • [24] Distributed Cooperative Spectrum Sharing in UAV Networks Using Multi-Agent Reinforcement Learning
    Shamsoshoara, Alireza
    Khaledi, Mehrdad
    Afghah, Fatemeh
    Razi, Abolfazl
    Ashdown, Jonathan
    2019 16TH IEEE ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC), 2019,
  • [25] Effective credit assignment deep policy gradient multi-agent reinforcement learning for vehicle dispatch
    Xiaohui Huang
    Xiong Zhang
    Jiahao Ling
    Xuebo Cheng
    Applied Intelligence, 2023, 53 : 23457 - 23469
  • [26] Effective credit assignment deep policy gradient multi-agent reinforcement learning for vehicle dispatch
    Huang, Xiaohui
    Zhang, Xiong
    Ling, Jiahao
    Cheng, Xuebo
    APPLIED INTELLIGENCE, 2023, 53 (20) : 23457 - 23469
  • [27] Spectrum Sharing in Vehicular Networks Based on Multi-Agent Reinforcement Learning
    Liang, Le
    Ye, Hao
    Li, Geoffrey Ye
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (10) : 2282 - 2292
  • [28] Cooperative reinforcement learning in topology-based multi-agent systems
    Dan Xiao
    Ah-Hwee Tan
    Autonomous Agents and Multi-Agent Systems, 2013, 26 : 86 - 119
  • [29] Cooperative reinforcement learning in topology-based multi-agent systems
    Xiao, Dan
    Tan, Ah-Hwee
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2013, 26 (01) : 86 - 119
  • [30] Cooperative Traffic Signal Control Based on Multi-agent Reinforcement Learning
    Gao, Ruowen
    Liu, Zhihan
    Li, Jinglin
    Yuan, Quan
    BLOCKCHAIN AND TRUSTWORTHY SYSTEMS, BLOCKSYS 2019, 2020, 1156 : 787 - 793