G-YOLO: A Lightweight Infrared Aerial Remote Sensing Target Detection Model for UAVs Based on YOLOv8

被引:2
|
作者
Zhao, Xiaofeng [1 ]
Zhang, Wenwen [1 ]
Xia, Yuting [1 ]
Zhang, Hui [1 ]
Zheng, Chao [1 ]
Ma, Junyi [1 ]
Zhang, Zhili [1 ]
机构
[1] Xian Res Inst High Tech, Xian 710025, Peoples R China
基金
中国国家自然科学基金;
关键词
infrared target detection; YOLOv8; GhostBottleneckV2; UAVs; light-weight network structure;
D O I
10.3390/drones8090495
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A lightweight infrared target detection model, G-YOLO, based on an unmanned aerial vehicle (UAV) is proposed to address the issues of low accuracy in target detection of UAV aerial images in complex ground scenarios and large network models that are difficult to apply to mobile or embedded platforms. Firstly, the YOLOv8 backbone feature extraction network is improved and designed based on the lightweight network, GhostBottleneckV2, and the remaining part of the backbone network adopts the depth-separable convolution, DWConv, to replace part of the standard convolution, which effectively retains the detection effect of the model while greatly reducing the number of model parameters and calculations. Secondly, the neck structure is improved by the ODConv module, which adopts an adaptive convolutional structure to adaptively adjust the convolutional kernel size and step size, which allows for more effective feature extraction and detection based on targets at different scales. At the same time, the neck structure is further optimized using the attention mechanism, SEAttention, to improve the model's ability to learn global information of input feature maps, which is then applied to each channel of each feature map to enhance the useful information in a specific channel and improve the model's detection performance. Finally, the introduction of the SlideLoss loss function enables the model to calculate the differences between predicted and actual truth bounding boxes during the training process, and adjust the model parameters based on these differences to improve the accuracy and efficiency of object detection. The experimental results show that compared with YOLOv8n, the G-YOLO reduces the missed and false detection rates of infrared small target detection in complex backgrounds. The number of model parameters is reduced by 74.2%, the number of computational floats is reduced by 54.3%, the FPS is improved by 71, which improves the detection efficiency of the model, and the average accuracy (mAP) reaches 91.4%, which verifies the validity of the model for UAV-based infrared small target detection. Furthermore, the FPS of the model reaches 556, and it will be suitable for wider and more complex detection task such as small targets, long-distance targets, and other complex scenes.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Improved Real-Time Monitoring Lightweight Model for UAVs Based on YOLOv8
    Zhang, Chuanlei
    Zhao, Xingchen
    Sun, Di
    Wang, Xinliang
    Xu, Guoyi
    Zhao, Runjun
    Gao, Ming
    Ma, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XI, ICIC 2024, 2024, 14872 : 278 - 288
  • [22] SPDC-YOLO: An Efficient Small Target Detection Network Based on Improved YOLOv8 for Drone Aerial Image
    Bi, Jingxin
    Li, Keda
    Zheng, Xiangyue
    Zhang, Gang
    Lei, Tao
    REMOTE SENSING, 2025, 17 (04)
  • [23] DSS-YOLO: an improved lightweight real-time fire detection model based on YOLOv8
    Wang, Hongjie
    Fu, Xiaoyang
    Yu, Zixuan
    Zeng, Zhifeng
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [24] Optical Remote Sensing Ship Detection Based on Improved YOLOv8
    Zhu, Shengbo
    Wei, Lisheng
    Liu, Zhenhua
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024, 2024, : 40 - 45
  • [25] Object Detection for Remote Sensing Based on the Enhanced YOLOv8 With WBiFPN
    Shen, Lingyun
    Lang, Baihe
    Song, Zhengxun
    IEEE ACCESS, 2024, 12 : 158239 - 158257
  • [26] A Lightweight Tea Pest Detection Algorithm Based on Improved YOLOv8: YOLO-SEM
    Ye, Rong
    Shao, Guoqi
    Li, Tong
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 52 - 61
  • [27] RLE-YOLO: A Lightweight and Multiscale SAR Ship Detection Based on Improved YOLOv8
    Xu, Yifan
    Xue, Xiaorong
    Li, Chuanlu
    Zhao, Siyue
    Xu, Xingbiao
    Zeng, Caijia
    IEEE ACCESS, 2025, 13 : 46584 - 46600
  • [28] Lightweight Small Target Detection Algorithm Based on YOLOv8 Network Improvement
    Hao, Xiaoyi
    Li, Ting
    IEEE ACCESS, 2025, 13 : 14051 - 14062
  • [29] Research on Infrared Dim Target Detection Based on Improved YOLOv8
    Liu, Yangfan
    Li, Ning
    Cao, Lihua
    Zhang, Yunfeng
    Ni, Xu
    Han, Xiyu
    Dai, Deen
    REMOTE SENSING, 2024, 16 (16)
  • [30] FBS-YOLO: an improved lightweight bearing defect detection algorithm based on YOLOv8
    Li, Junjie
    Cheng, Mingxia
    PHYSICA SCRIPTA, 2025, 100 (02)