G-YOLO: A Lightweight Infrared Aerial Remote Sensing Target Detection Model for UAVs Based on YOLOv8

被引:2
|
作者
Zhao, Xiaofeng [1 ]
Zhang, Wenwen [1 ]
Xia, Yuting [1 ]
Zhang, Hui [1 ]
Zheng, Chao [1 ]
Ma, Junyi [1 ]
Zhang, Zhili [1 ]
机构
[1] Xian Res Inst High Tech, Xian 710025, Peoples R China
基金
中国国家自然科学基金;
关键词
infrared target detection; YOLOv8; GhostBottleneckV2; UAVs; light-weight network structure;
D O I
10.3390/drones8090495
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A lightweight infrared target detection model, G-YOLO, based on an unmanned aerial vehicle (UAV) is proposed to address the issues of low accuracy in target detection of UAV aerial images in complex ground scenarios and large network models that are difficult to apply to mobile or embedded platforms. Firstly, the YOLOv8 backbone feature extraction network is improved and designed based on the lightweight network, GhostBottleneckV2, and the remaining part of the backbone network adopts the depth-separable convolution, DWConv, to replace part of the standard convolution, which effectively retains the detection effect of the model while greatly reducing the number of model parameters and calculations. Secondly, the neck structure is improved by the ODConv module, which adopts an adaptive convolutional structure to adaptively adjust the convolutional kernel size and step size, which allows for more effective feature extraction and detection based on targets at different scales. At the same time, the neck structure is further optimized using the attention mechanism, SEAttention, to improve the model's ability to learn global information of input feature maps, which is then applied to each channel of each feature map to enhance the useful information in a specific channel and improve the model's detection performance. Finally, the introduction of the SlideLoss loss function enables the model to calculate the differences between predicted and actual truth bounding boxes during the training process, and adjust the model parameters based on these differences to improve the accuracy and efficiency of object detection. The experimental results show that compared with YOLOv8n, the G-YOLO reduces the missed and false detection rates of infrared small target detection in complex backgrounds. The number of model parameters is reduced by 74.2%, the number of computational floats is reduced by 54.3%, the FPS is improved by 71, which improves the detection efficiency of the model, and the average accuracy (mAP) reaches 91.4%, which verifies the validity of the model for UAV-based infrared small target detection. Furthermore, the FPS of the model reaches 556, and it will be suitable for wider and more complex detection task such as small targets, long-distance targets, and other complex scenes.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Lightweight Remote Sensing Small Target Image Detection Algorithm Based on Improved YOLOv8
    Nie, Haijiao
    Pang, Huanli
    Ma, Mingyang
    Zheng, Ruikai
    SENSORS, 2024, 24 (09)
  • [2] ITD-YOLOv8: An Infrared Target Detection Model Based on YOLOv8 for Unmanned Aerial Vehicles
    Zhao, Xiaofeng
    Zhang, Wenwen
    Zhang, Hui
    Zheng, Chao
    Ma, Junyi
    Zhang, Zhili
    DRONES, 2024, 8 (04)
  • [3] G-YOLO: A YOLOv7-based target detection algorithm for lightweight hazardous chemical vehicles
    Yu, Cuiying
    Zhou, Lei
    Liu, Bushi
    Zhao, Yue
    Zhu, Pengcheng
    Chen, Liqing
    Chen, Bolun
    PLOS ONE, 2024, 19 (04):
  • [4] Improved lightweight infrared road target detection method based on YOLOv8
    Yao, Jialong
    Xu, Sheng
    Feijiang, Huang
    Su, Chengyue
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141
  • [5] Improved Lightweight Ship Target Detection Algorithm for Optical Remote Sensing Images with YOLOv8
    Yang, Zhiyuan
    Luo, Liang
    Wu, Tianyang
    Yu, Boxiang
    Computer Engineering and Applications, 60 (16): : 248 - 257
  • [6] A Remote Sensing Image Target Detection Algorithm Based on Improved YOLOv8
    Wang, Haoyu
    Yang, Haitao
    Chen, Hang
    Wang, Jinyu
    Zhou, Xixuan
    Xu, Yifan
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [7] Improved YOLOv8 Aerial Small Target Detection Method: CRP-YOLO
    Zhao, Zhihong
    Hao, Ziye
    Computer Engineering and Applications, 2024, 60 (13) : 209 - 218
  • [8] A Lightweight Real-Time Infrared Object Detection Model Based on YOLOv8 for Unmanned Aerial Vehicles
    Ding, Baolong
    Zhang, Yihong
    Ma, Shuai
    DRONES, 2024, 8 (09)
  • [9] PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8
    Liu, Yuhang
    Huang, Zhenghua
    Song, Qiong
    Bai, Kun
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [10] FE-YOLO: A Lightweight Model for Construction Waste Detection Based on Improved YOLOv8 Model
    Yang, Yizhong
    Li, Yexue
    Tao, Maohu
    BUILDINGS, 2024, 14 (09)