Structural Control of Copper-Based MOF Catalysts for Electroreduction of CO2: A Review

被引:1
|
作者
Fu, Hongxin [1 ]
Ma, Hailing [2 ]
Zhao, Shuaifei [3 ]
机构
[1] Shenyang Univ Chem Technol, Coll Sci, Shenyang 110142, Peoples R China
[2] Monash Univ Malaysia, Sch Engn, Subang Jaya 47500, Malaysia
[3] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
关键词
structural control; copper-based MOF catalysts; electroreduction of CO2; CONVERSION; CH4; ACID;
D O I
10.3390/pr12102205
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
With the excessive use of fossil fuels, atmospheric carbon dioxide (CO2) concentrations have risen dramatically in recent decades, leading to serious environmental and social issues linked to global climate change. The emergence of renewable energy sources, such as solar, tidal, and wind energy, has created favorable conditions for large-scale electricity production. Recently, significant attention has been drawn to utilizing renewable energy to catalyze the conversion of CO2 into fuels, producing substantial industrial feedstocks. In these CO2 conversion processes, the structure and performance of catalysts are critical. Metal-organic frameworks (MOFs) and their derivatives have emerged as promising electrocatalysts for CO2 reduction, offering advantages such as high surface area, porosity, exceptional functionality, and high conversion efficiency. This article provides a comprehensive review of structural regulation strategies for copper-based MOFs, highlighting innovative mechanisms like synergistic bimetallic catalysis, targeted doping strategies, and the construction of heterostructures. These novel approaches distinguish this review from previous studies, offering new insights into the electrocatalytic performance of copper-based MOFs and proposing future research directions for improved catalyst design.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Recent Advances in Heterogeneous Electroreduction of CO2 on Copper-Based Catalysts
    Wu, Bowen
    Chen, Jian
    Qian, Linping
    CATALYSTS, 2022, 12 (08)
  • [2] Towards understanding of CO2 electroreduction to C2+ products on copper-based catalysts
    Liu, Tianfu
    Sang, Jiaqi
    Li, Hefei
    Wei, Pengfei
    Zang, Yipeng
    Wang, Guoxiong
    BATTERY ENERGY, 2022, 1 (04):
  • [3] Copper-based catalysts for CO2 electroreduction to C2/2+ products: Advance and perspective
    Wang, Fangmu
    Lu, Zhehong
    Guo, Hu
    Hao, Gazi
    Jiang, Wei
    Liu, Guigao
    COORDINATION CHEMISTRY REVIEWS, 2024, 515
  • [4] Electrocatalytic Reduction of CO2 on Copper-Based Catalysts
    Liu, Mengyan
    Wang, Yuanshuang
    Deng, Wen
    Wen, Zhenhai
    PROGRESS IN CHEMISTRY, 2018, 30 (04) : 398 - 409
  • [5] Boosting CO2 electroreduction towards C2+ products via CO* intermediate manipulation on copper-based catalysts
    Xiang, Kaisong
    Shen, Fenghua
    Fu, Yingxue
    Wu, Lin
    Wang, Zhujiang
    Yi, Huimin
    Liu, Xudong
    Wang, Pingshan
    Liu, Min
    Lin, Zhang
    Liu, Hui
    ENVIRONMENTAL SCIENCE-NANO, 2022, 9 (03) : 911 - 953
  • [6] Mechanism of CO and CO2 hydrogenation over copper-based catalysts
    Studt, Felix
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [7] Electrochemical CO2 Reduction to Ethanol with Copper-Based Catalysts
    Karapinar, Dilan
    Creissen, Charles E.
    de la Cruz, Jose Guillermo Rivera
    Schreiber, Moritz W.
    Fontecave, Marc
    ACS ENERGY LETTERS, 2021, 6 (02) : 694 - 706
  • [8] Electrochemical Approaches to CO2 Conversion on Copper-Based Catalysts
    Zhang, Gong
    Li, Lulu
    Zhao, Zhi-Jian
    Wang, Tuo
    Gong, Jinlong
    ACCOUNTS OF MATERIALS RESEARCH, 2023, 4 (03): : 212 - 222
  • [9] Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction
    Birhanu, Mulatu Kassie
    Tsai, Meng-Che
    Kahsay, Amaha Woldu
    Chen, Chun-Tse
    Zeleke, Tamene Simachew
    Ibrahim, Kassa Belay
    Huang, Chen-Jui
    Su, Wei-Nien
    Hwang, Bing-Joe
    ADVANCED MATERIALS INTERFACES, 2018, 5 (24):
  • [10] Research progress of copper-based catalysts for CO2 electrochemical reduction
    Yan, Jia
    Song, Weixiu
    Zhao, Zhenli
    Zhang, Manyu
    Wu, Yanjing
    Zhang, Lianhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 89 : 664 - 685