AI-driven precision subcellular navigation with fluorescent probes

被引:2
|
作者
Zhu, Yingli [1 ]
Fang, Yanpeng [1 ]
Huang, Wenzhi [1 ]
Zhang, Weiheng [1 ]
Chen, Fei [1 ]
Dong, Jie [1 ]
Zeng, Wenbin [1 ]
机构
[1] Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
INHIBITORS; ORGANELLES; MOLECULES;
D O I
10.1039/d4tb01835d
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Precise navigation within intricate biological systems is pivotal for comprehending cellular functions and diagnosing diseases. Fluorescent molecular probes, designed to target specific biological molecules, are indispensable tools for this endeavor. This paper delves into the revolutionary potential of artificial intelligence (AI) in crafting highly precise and effective fluorescent probes. We will discuss how AI can be employed to: design new subcellular dyes by optimizing physicochemical properties; design prospective subcellular targeting probes based on specific receptors; quantitatively explore the potential chemical laws of fluorescent molecules to optimize the optical properties of fluorescent probes; optimize the comprehensive properties of the probe and guide the construction of multifunctional targeting probes. Additionally, we showcase recent AI-driven advancements in probe development and their successful biomedical applications, while addressing challenges and outlining future directions towards transforming subcellular research, diagnostics, and drug discovery. AI-driven precision subcellular navigation with fluorescent probes.
引用
收藏
页码:11054 / 11062
页数:9
相关论文
共 50 条
  • [41] AI-driven optimization in plant factories
    Martin, Michael
    NATURE FOOD, 2024, 5 (10): : 805 - 806
  • [42] Regulation for the AI-driven new age
    Dempsey, Paul
    Engineering and Technology, 2021, 16 (08):
  • [43] XiaoMu: an AI-driven assistant for MOOCs
    Zhengyang Song
    Jie Tang
    Tracy Xiao Liu
    Wenjiang Zheng
    Lili Wu
    Wenzheng Feng
    Jing Zhang
    Science China Information Sciences, 2021, 64
  • [44] Overcoming limitations in current measures of drug response may enable AI-driven precision oncology
    Ovchinnikova, Katja
    Born, Jannis
    Chouvardas, Panagiotis
    Rapsomaniki, Marianna
    Kruithof-de Julio, Marianna
    NPJ PRECISION ONCOLOGY, 2024, 8 (01)
  • [45] AI-Driven Innovation in Skin Kinetics for Transdermal Drug Delivery: Overcoming Barriers and Enhancing Precision
    Albayati, Nubul
    Talluri, Sesha Rajeswari
    Dholaria, Nirali
    Michniak-Kohn, Bozena
    PHARMACEUTICS, 2025, 17 (02)
  • [46] The Future of Minimally Invasive Capsule Panendoscopy: Robotic Precision, Wireless Imaging and AI-Driven Insights
    Mascarenhas, Miguel
    Martins, Miguel
    Afonso, Joao
    Ribeiro, Tiago
    Cardoso, Pedro
    Mendes, Francisco
    Andrade, Patricia
    Cardoso, Helder
    Ferreira, Joao
    Macedo, Guilherme
    CANCERS, 2023, 15 (24)
  • [47] ENHANCING PHYSICAL EDUCATION MOVEMENT PRECISION THROUGH AI-DRIVEN DEEP LEARNING CALIBRATION SYSTEMS
    Yin, Qiang
    Wang, Dong
    Zhang, Lin
    REVISTA INTERNACIONAL DE MEDICINA Y CIENCIAS DE LA ACTIVIDAD FISICA Y DEL DEPORTE, 2025, 25 (99): : 452 - 469
  • [48] AI-Driven Personalization to Support Human-AI Collaboration
    Conati, Cristina
    COMPANION OF THE 2024 ACM SIGCHI SYMPOSIUM ON ENGINEERING INTERACTIVE COMPUTING SYSTEMS, EICS 2024, 2024, : 5 - 6
  • [49] AI-Driven Drug Discovery for Rare Diseases
    Gangwal, Amit
    Lavecchia, Antonio
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, : 2214 - 2231
  • [50] Patient privacy in AI-driven omics methods
    Zhou, Juexiao
    Huang, Chao
    Gao, Xin
    TRENDS IN GENETICS, 2024, 40 (05) : 383 - 386