Genetically Engineered Liposwitch-Based Nanomaterials

被引:1
|
作者
Hossain, Md Shahadat [1 ,2 ]
Wang, Alex [1 ]
Anika, Salma [1 ]
Zhang, Zhe [1 ]
Mozhdehi, Davoud [1 ]
机构
[1] SUNY Syracuse, Dept Chem, Syracuse, NY 13244 USA
[2] Univ Dhaka, Fac Pharm, Dept Pharmaceut Technol, Dhaka 1000, Bangladesh
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
CALCIUM-BINDING; RECOVERIN; ELASTIN; PEPTIDE;
D O I
10.1021/acs.biomac.4c01388
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fusion of intrinsically disordered and globular proteins is a powerful strategy to create functional nanomaterials. However, the immutable nature of genetic encoding restricts the dynamic adaptability of nanostructures postexpression. To address this, we envisioned using a myristoyl switch, a protein that combines allostery and post-translational modifications-two strategies that modify protein properties without altering their sequence-to regulate intrinsically disordered protein (IDP)-driven nanoassembly. A typical myristoyl switch, allosterically activated by a stimulus, reveals a sequestered lipid for membrane association. We hypothesize that this conditional exposure of lipids can regulate the assembly of fusion proteins, a concept we term "liposwitching". We tested this by fusing recoverin, a calcium-dependent myristoyl switch, with elastin-like polypeptide, a thermoresponsive model IDP. Biophysical analyses confirmed recoverin's myristoyl-switch functionality, while dynamic light scattering and cryo-transmission electron microscopy showed distinct calcium- and lipidation-dependent phase separation and assembly. This study highlights liposwitching as a viable strategy for controlling DP-driven nanoassembly, enabling applications in synthetic biology and cellular engineering.
引用
收藏
页码:8058 / 8068
页数:11
相关论文
共 50 条
  • [41] Environmental risks of engineered nanomaterials
    Yang, Kun
    Lin, Dao-hui
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2014, 15 (08): : 547 - 551
  • [42] Immunosafety assessment of engineered nanomaterials
    Fadeel, B.
    TOXICOLOGY LETTERS, 2011, 205 : S14 - S14
  • [43] Immunological properties of engineered nanomaterials
    Marina A. Dobrovolskaia
    Scott E. McNeil
    Nature Nanotechnology, 2007, 2 : 469 - 478
  • [44] Engineered nanomaterials in waste streams
    Part, F.
    Huber-Humer, M.
    Berge, N. D.
    WASTE MANAGEMENT, 2016, 51 : 1 - 2
  • [45] Engineered nanomaterials for their applications in theragnostics
    Hwang, Jangsun
    Lee, Dohyun
    Seo, Youngmin
    Son, Jaewoo
    Jo, Yeonho
    Lee, Kyungwoo
    Park, Chanhwi
    Choi, Jonghoon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 66 : 20 - 28
  • [46] Genetically Engineered Bacteria-Based BioTransceivers for Molecular Communication
    Unluturk, Bige D.
    Bicen, A. Ozan
    Akyildiz, Ian F.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2015, 63 (04) : 1271 - 1281
  • [47] Genetically Engineered Elastin-based Biomaterials for Biomedical Applications
    Santos, Mercedes
    Serrano-Ducar, Sofia
    Gonzalez-Valdivieso, Juan
    Vallejo, Reinaldo
    Girotti, Alessandra
    Cuadrado, Purificacion
    Javier Arias, Francisco
    CURRENT MEDICINAL CHEMISTRY, 2019, 26 (40) : 7117 - 7146
  • [48] A risk-based approach to the regulation of genetically engineered organisms
    Conko, Gregory
    Kershen, Drew L.
    Miller, Henry
    Parrott, Wayne A.
    NATURE BIOTECHNOLOGY, 2016, 34 (05) : 493 - 503
  • [49] Sorption of engineered nanomaterials to soils
    Hristovski, Kiril D.
    Mousset, Emmanuel
    Luque, Hugo
    Westerhoff, Paul K.
    Posner, Jonathan D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [50] Immunological properties of engineered nanomaterials
    Dobrovolskaia, Marina A.
    Mcneil, Scott E.
    NATURE NANOTECHNOLOGY, 2007, 2 (08) : 469 - 478