Cooperating with additives: low-cost hole-transporting materials for improved stability of perovskite solar cells

被引:1
|
作者
Makinen, Paavo [1 ]
Conelli, Daniele [2 ]
Grandhi, G. Krishnamurthy [1 ]
Suranna, Gian Paolo [2 ,3 ]
Vivo, Paola [1 ]
Grisorio, Roberto [2 ]
机构
[1] Tampere Univ, Fac Engn & Nat Sci, Hybrid Solar Cells, POB 541, FI-33014 Tampere, Finland
[2] Politecn Bari, Dipartimento Ingn Civile Ambientale Terr Edile & C, Via Orabona 4, I-70125 Bari, Italy
[3] CNR NANOTEC, Inst Nanotechnol, Campus Ecoteckne,Via Monteroni, I-73100 Lecce, Italy
来源
SUSTAINABLE ENERGY & FUELS | 2024年 / 9卷 / 01期
关键词
46;
D O I
10.1039/d4se01356e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The widespread adoption of perovskite-based solar technologies is strictly related to the cost reduction of the hole-transporting component in the device, while maintaining compatibility with its absorbing active layer. To date, several organic systems have been developed to compete with the pioneering 2,2 ',7,7 '-tetrakis(N,N-di-4-methoxyphenylamino)-9,9 '-spirobifluorene (Spiro-OMeTAD) used as the benchmarking hole-transporting material (HTM). However, an easily accessible platform to construct economically competitive HTM scaffolds as alternatives to Spiro-OMeTAD is still lacking. In this study, we propose a straightforward route (excluding organometallic cross-coupling reactions) to prepare nonconventional HTMs (BTF and BTC) based on a bithiophene core decorated with unsymmetrical triarylamine groups. The two HTMs are implemented in dopant-free n-i-p perovskite solar cells (PSCs) to evaluate their performance and long-term behaviour. Despite enhancing hole extraction and transport at the perovskite/HTM interface compared to the Spiro-OMeTAD benchmark, BTC does not perform exceptionally as an undoped HTM in PSCs (PCE = 14.0% vs. 16.5% of the doped Spiro-OMeTAD reference). Moreover, the efficiencies of unencapsulated devices rapidly degraded over time (T80: similar to 57 days) due to weak HTM adhesion at the perovskite interface. Conversely, using tert-butylpyridine as the sole additive slightly increases performance (PCE = 14.8%) and remarkably improves device resilience to ambient exposure (PCE = 15.4% after 401 days), representing one of the longest shelf-stability experiments ever reported. Other dopant/additive formulations are unproductive in terms of both efficiencies and device resistance. These results indicate that focusing on the molecular design of low-cost HTMs and investigating the appropriate HTM/additive systems can be a promising strategy for developing efficient and stable PSCs.
引用
收藏
页码:172 / 184
页数:13
相关论文
共 50 条
  • [31] A new binaphthol based hole-transporting materials for perovskite solar cells
    Zong, Xueping
    Qiao, Wenhua
    Chen, Yu
    Sun, Zhe
    Liang, Mao
    Xue, Song
    TETRAHEDRON, 2017, 73 (24) : 3398 - 3405
  • [32] Perovskite Solar Cells Based on Oligotriarylamine Hexaarylbenzene as Hole-Transporting Materials
    Shasti, Mona
    Volker, Sebastian F.
    Collavini, Silvia
    Valero, Silvia
    Ruiperez, Fernando
    Mortezaali, Abdollah
    Zakeeruddin, Shaik M.
    Gratzel, M.
    Hagfeldt, A.
    Luis Delgado, Juan
    ORGANIC LETTERS, 2019, 21 (09) : 3261 - 3264
  • [33] Selenophene-Based Hole-Transporting Materials for Perovskite Solar Cells
    Illicachi, Luis A.
    Urieta-Mora, Javier
    Momblona, Cristina
    Molina-Ontoria, Agustin
    Calbo, Joaquin
    Arago, Juan
    Insuasty, Braulio
    Ortiz, Alejandro
    Orti, Enrique
    Martin, Nazario
    Nazeeruddin, Mohammad Khaja
    CHEMPLUSCHEM, 2021, 86 (07): : 1006 - 1013
  • [34] Review of current progress in hole-transporting materials for perovskite solar cells
    Prerna Mahajan
    Bhavya Padha
    Sonali Verma
    Vinay Gupta
    Ram Datt
    Wing Chung Tsoi
    Soumitra Satapathi
    Sandeep Arya
    Journal of Energy Chemistry, 2022, 68 (05) : 330 - 386
  • [35] Application of phenonaphthazine derivatives as hole-transporting materials for perovskite solar cells
    Xueyuan Liu
    Fei Zhang
    Xicheng Liu
    Mengna Sun
    Shirong Wang
    Dongmei Li
    Qingbo Meng
    Xianggao Li
    Journal of Energy Chemistry , 2016, (04) : 702 - 708
  • [36] Review of current progress in hole-transporting materials for perovskite solar cells
    Mahajan, Prerna
    Padha, Bhavya
    Verma, Sonali
    Gupta, Vinay
    Datt, Ram
    Tsoi, Wing Chung
    Satapathi, Soumitra
    Arya, Sandeep
    JOURNAL OF ENERGY CHEMISTRY, 2022, 68 : 330 - 386
  • [37] Truxene-based Hole-transporting Materials for Perovskite Solar Cells
    Lin Lin-Lin
    Tu Yong-Guang
    Tang Chang-Quan
    Ma Yun-Long
    Chen Shan-Ci
    Yin Zhi-Gang
    Wei Jia-Jun
    Zheng Qing-Dong
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35 (10) : 1517 - 1524
  • [38] Application of phenonaphthazine derivatives as hole-transporting materials for perovskite solar cells
    Xueyuan Liu
    Fei Zhang
    Xicheng Liu
    Mengna Sun
    Shirong Wang
    Dongmei Li
    Qingbo Meng
    Xianggao Li
    Journal of Energy Chemistry, 2016, 25 (04) : 702 - 708
  • [39] Truxene-based Hole-transporting Materials for Perovskite Solar Cells
    林琳琳
    涂用广
    汤昌泉
    马云龙
    陈善慈
    尹志刚
    魏佳骏
    郑庆东
    结构化学, 2016, 35 (10) : 1517 - 1524
  • [40] Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core
    Santos, Jose
    Calbo, Joaquin
    Sandoval-Torrientes, Rafael
    Garcia-Benito, Ines
    Kanda, Hiroyuki
    Zimmermann, Iwan
    Arago, Juan
    Nazeeruddin, Mohammad Khaja
    Orti, Enrique
    Martin, Nazario
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) : 28214 - 28221