Direct Laser Synthesis of Fe2O3 Modified TiO2

被引:0
|
作者
Lennikov, V. V. [1 ]
Gomez-Herrero, A. [2 ]
Angurel, L. A. [1 ]
de la Fuente, G. F. [1 ]
Otero-Diaz, L. C. [3 ]
机构
[1] Univ Zaragoza, INMA, CSIC, Ma Luna,3, Zaragoza, Spain
[2] Univ Complutense Madrid, ICTS Ctr Nacl Microscopia Elect, E-28040 Madrid, Spain
[3] Univ Complutense, Fac Ciencias Quim, Dpto Quim Inorgan 1, Madrid, Spain
来源
关键词
TiO2; Fe2O3; Rapid Synthesis; Laser Line Scan; CRYSTAL-STRUCTURE; RUTILE;
D O I
10.1002/zaac.202400078
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A very fast, selective CO2 laser line scan direct synthesis method is presented and has been applied here to study phase and defect formation within an irradiated mixture of powdered oxides, as a proof-of-principle. A nominal composition interval of 0<x<0.03 was conveniently chosen for the TiO2+xFe(2)O(3) system herein reported. X-ray diffraction analyses were used to determine the main crystalline phase composition. Thus, for 3 % mol. Fe2O3, pseudobrookite crystals were found to coexist with rutile-type MO2-delta (M=Ti, Fe) with extended defects. These are composed mainly of (121)(r) and (132)(r) crystallographic shear planes (CSP's), where r subindex refers to the rutile subcell. For samples with a lower Fe2O3 content (2, 1, 0.5 % mol) only iron-doped rutile phases were observed, with complex microstructure arising from the presence of multi-twinned (011)(r) and (110)(r) crystals and isolated and/or ordered CSP's at short length scale. The diverse microstructures observed in the CO2 laser produced samples correlate with the conditions imposed during the laser treatment, which include intrinsically high solidification rates and steep temperature gradients.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts
    Peng, Linlin
    Xie, Tengfeng
    Lu, Yongchun
    Fan, Haimei
    Wang, Dejun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (28) : 8033 - 8041
  • [32] Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films
    Dhananjeyan, MR
    Mielczarski, E
    Thampi, KR
    Buffat, P
    Bensimon, M
    Kulik, A
    Mielczarski, J
    Kiwi, J
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (48): : 12046 - 12055
  • [33] Efficient removal of Congo red by magnetically separable mesoporous TiO2 modified with γ-Fe2O3
    Yu, M.
    Zhao, S.
    Wu, H.
    Asuha, S.
    JOURNAL OF POROUS MATERIALS, 2013, 20 (05) : 1353 - 1360
  • [34] PHOTOEVOLUTION OF HYDROGEN FROM WATER ON MODIFIED TIO2 .1. TIO2 DOPED WITH NIO, CO3O4 AND FE2O3
    ZIELINSKI, S
    SOBCZYNSKI, A
    ACTA CHIMICA HUNGARICA-MODELS IN CHEMISTRY, 1985, 120 (03): : 229 - 234
  • [35] Efficient removal of Congo red by magnetically separable mesoporous TiO2 modified with γ-Fe2O3
    M. Yu
    S. Zhao
    H. Wu
    S. Asuha
    Journal of Porous Materials, 2013, 20 : 1353 - 1360
  • [36] α-Fe2O3 modified TiO2 nanoparticulate films prepared by sparking off Fe electroplated Ti tips
    Hankhuntod, A.
    Kantarak, E.
    Sroila, W.
    Kumpika, T.
    Singjai, P.
    Thongsuwan, W.
    APPLIED SURFACE SCIENCE, 2019, 477 : 116 - 120
  • [37] α-Fe2O3 /TiO2 anode for Li-storage and applications in LiNi0.5Mn1.5O4// α-Fe2O3 /TiO2 full cells
    Zhang, Xue
    Xu, Haoran
    Jiang, Jifen
    Ma, Wenzhao
    Wang, Lijuan
    Chen, Baokuan
    Meng, Zhaohui
    CERAMICS INTERNATIONAL, 2024, 50 (21) : 42420 - 42433
  • [38] Preparation of Fe2O3/Al2O3 and Fe2O3/TiO2 Pellets as Oxygen Carrier for Chemical Looping Process
    Ku, Young
    Lin, Pao-Hsien
    Wu, Hsuan-Chih
    Liu, Yu-Cheng
    Tseng, Yao-Hsuan
    Lee, Hao-Yeh
    AEROSOL AND AIR QUALITY RESEARCH, 2017, 17 (09) : 2300 - 2309
  • [39] Preparation and properties of Fe2O3/TiO2 and ZnO/TiO2 nanosized particulate thin films
    Jiang, HB
    Gao, L
    Zhang, QH
    JOURNAL OF INORGANIC MATERIALS, 2003, 18 (03) : 695 - 699
  • [40] Phase Relations in the Systems Al2TiO5–Fe2O3 , Al2O3–TiO2–Fe2O3 , and Al2TiO5–Cr2O3
    T. L. Lekanova
    Yu. I. Ryabkov
    O. A. Sevbo
    V. V. Viktorov
    Inorganic Materials, 2004, 40 : 1191 - 1195