Effect of Asphalt Granulation on the Performance of Artificial Graphite Anode Materials for Lithium-Ion Batteries

被引:0
|
作者
Yang, Cong [1 ,2 ]
Gong, Jun [1 ,2 ]
Jiang, Zhao [2 ]
Lei, Tiejun [2 ]
Zheng, Qian [2 ]
Deng, Qi [1 ,2 ]
Li, Yejun [3 ,4 ]
机构
[1] Hunan Univ Sci & Technol, Coll Mech & Elect Engn, Xiangtan 411201, Peoples R China
[2] Hunan Bobsun New Mat Co Ltd, Changsha 410199, Peoples R China
[3] Cent South Univ, Sch Phys, Changsha 410083, Peoples R China
[4] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial graphite; anode materials; pitch; granulation; secondary particles; SURFACE;
D O I
10.3390/ma17246224
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to investigate the effects of the softening point, the addition ratio, and the median particle size (Dv50) of the asphalt on the performance of secondary particles of artificial graphite anode materials prepared by granulation, ten-kilogram orthogonal experiments were designed. Dv50 and powder orientation index (OI) value of the prepared secondary particles of artificial graphite anode materials were employed as evaluation index, and the results of the orthogonal experiments were subjected to polarity analysis, analysis of variance (ANOVA), and multiple linear regression analysis. It is demonstrated that the addition ratio of the asphalt exerts the most pronounced influence on Dv50 and powder OI value of secondary granular artificial graphite anode materials, followed by the softening point. Conversely, the median particle size Dv50 of the asphalt exerts the least significant effect. With regard to the evaluation indices, the optimal granulation conditions were determined to be a softening point of 250 degrees C, an addition ratio of 11%, and Dv50 of 2-3 mu m of the asphalt. Dv50 of the prepared secondary granular artificial graphite anode material was 17.91 mu m, with an OI value of 1.91. The specific capacity of the first charging was 340.52 mAh/g, and the first columbic efficiency was 94.79%.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Effect of pyrolytic polyacrylonitrile on electrochemical performance of Si/graphite composite anode for lithium-ion batteries
    Qingmei Zhao
    Wei Xiao
    Xuemin Yan
    Shaoxiong Qin
    Baolong Qu
    Lin Zhao
    Ionics, 2017, 23 : 1685 - 1692
  • [22] Effect of pyrolytic polyacrylonitrile on electrochemical performance of Si/graphite composite anode for lithium-ion batteries
    Zhao, Qingmei
    Xiao, Wei
    Yan, Xuemin
    Qin, Shaoxiong
    Qu, Baolong
    Zhao, Lin
    IONICS, 2017, 23 (07) : 1685 - 1692
  • [23] Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries
    Xing, Baolin
    Zhang, Chuantao
    Cao, Yijun
    Huang, Guangxu
    Liu, Quanrun
    Zhang, Chuanxiang
    Chen, Zhengfei
    Yi, Guiyun
    Chen, Lunjian
    Yu, Jianglong
    FUEL PROCESSING TECHNOLOGY, 2018, 172 : 162 - 171
  • [24] Effect of graphene nanosheet addition on the electrochemical performance of anode materials for lithium-ion batteries
    Guo, Peng
    Song, Huaihe
    Chen, Xiaohong
    Ma, Lulu
    Wang, Guohua
    Wang, Feng
    ANALYTICA CHIMICA ACTA, 2011, 688 (02) : 146 - 155
  • [25] Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries
    Chunmei Wang
    Hailei Zhao
    Jing Wang
    Jie Wang
    Pengpeng Lv
    Ionics, 2013, 19 : 221 - 226
  • [26] Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries
    Wang, Chunmei
    Zhao, Hailei
    Wang, Jing
    Wang, Jie
    Lv, Pengpeng
    IONICS, 2013, 19 (02) : 221 - 226
  • [27] A comparative study of electrochemical performance of graphene sheets, expanded graphite and natural graphite as anode materials for lithium-ion batteries
    Bai, Li-Zhong
    Zhao, Dong-Lin
    Zhang, Tai-Ming
    Xie, Wei-Gang
    Zhang, Ji-Ming
    Shen, Zeng-Min
    ELECTROCHIMICA ACTA, 2013, 107 : 555 - 561
  • [28] Optimizing anode materials for lithium-ion batteries: The role of lithium iron phosphate/graphite composites
    Devlet, Bayram
    Kecebas, Ali
    Koc, Fatos
    Gizli, Nilay
    Sahin, Utkucan
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 12799 - 12814
  • [29] High performance Si/MgO/graphite composite as the anode for lithium-ion batteries
    Zhou, Wenchao
    Upreti, Shailesh
    Whittingham, M. Stanley
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (10) : 1102 - 1104
  • [30] Red phosphorus/graphite composite as a high performance anode for lithium-ion batteries
    Cheng, Zhikang
    Wu, Ye
    Huang, Haijun
    SOLID STATE IONICS, 2023, 389