HTTNet: hybrid transformer-based approaches for trajectory prediction

被引:0
|
作者
Ge, Xianlei [1 ,3 ]
Shen, Xiaobo [1 ,4 ]
Zhou, Xuanxin [1 ]
Li, Xiaoyan [2 ,3 ]
机构
[1] Huainan Normal Univ, Sch Elect Engn, Huainan, Peoples R China
[2] Huainan Normal Univ, Sch Comp, Huainan, Peoples R China
[3] Natl Univ, Coll Comp & Informat Technol, Manila, Philippines
[4] Technol Univ Philippines, Coll Ind Educ, Manila, Philippines
关键词
trajectory prediction; transformer; convolutional neural network; multimodal data; LSTM;
D O I
10.24425/bpasts.2024.150811
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Forecasting future trajectories of intelligent agents presents a formidable challenge, necessitating the analysis of intricate scenarios and uncertainties arising from agent interactions. Consequently, it is judicious to contemplate the establishment of inter-agent relationships and the assimilation of contextual semantic information. In this manuscript, we introduce HTTNet, a comprehensive framework that spans three dimensions of information modeling: (1) the temporal dimension, where HTTNet employs a time encoder to articulate time sequences, comprehending the influences of past and future trajectories; (2) the social dimension, where the trajectory encoder facilitates the input of trajectories from multiple agents, thereby streamlining the modeling of interaction information among intelligent agents; (3) the contextual dimension, where the TF-map encoder integrates semantic scene input, amplifying HTTNet cognitive grasp of scene information. Furthermore, HTTNet integrates a hybrid modeling paradigm featuring CNN and transformer, transmuting map scenes into feature information for the transformer. Qualitative and quantitative analyses on the nuScenes and interaction datasets highlight the exceptional performance of HTTNet, achieving 1.03 minADE10 and a 0.31 miss rate on nuScenes, underscoring its effectiveness in multi-agent trajectory prediction in complex scenarios.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Transformer-based power system energy prediction model
    Rao, Zhuyi
    Zhang, Yunxiang
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 913 - 917
  • [32] Transformer-Based Prediction of Hospital Readmissions for Diabetes Patients
    Garcia-Mosquera, Jorge
    Villa-Monedero, Maria
    Gil-Martin, Manuel
    San-Segundo, Ruben
    ELECTRONICS, 2025, 14 (01):
  • [33] Stochastic Non-Autoregressive Transformer-Based Multi-Modal Pedestrian Trajectory Prediction for Intelligent Vehicles
    Chen, Xiaobo
    Zhang, Huanjia
    Deng, Fuwen
    Liang, Jun
    Yang, Jian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 3561 - 3574
  • [34] An improved transformer-based model for long-term 4D trajectory prediction in civil aviation
    Luo, Aofeng
    Luo, Yuxing
    Liu, Hong
    Du, Wenchao
    Wu, Xiping
    Chen, Hu
    Yang, Hongyu
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (09) : 1588 - 1598
  • [35] HDFormer: A transformer-based model for fishing vessel trajectory prediction via multi-source data fusion
    Lin, Siyuan
    Jiang, Yufei
    Hong, Feng
    Xu, Lixiang
    Huang, Haiguang
    Wang, Bin
    OCEAN ENGINEERING, 2025, 320
  • [36] Joint Intention and Trajectory Prediction Based on Transformer
    Sui, Ze
    Zhou, Yue
    Zhao, Xu
    Chen, Ao
    Ni, Yiyang
    IEEE International Conference on Intelligent Robots and Systems, 2021, : 7082 - 7088
  • [37] Transformer-based Approaches for Personality Detection using the MBTI Model
    Lazo Vasquez, Ricardo
    Ochoa-Luna, Jose
    2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,
  • [38] Joint Intention and Trajectory Prediction Based on Transformer
    Sui, Ze
    Zhou, Yue
    Zhao, Xu
    Chen, Ao
    Ni, Yiyang
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 7082 - 7088
  • [39] Legal Information Retrieval and Entailment Using Transformer-based Approaches
    Kim, Mi-Young
    Rabelo, Juliano
    Babiker, Housam Khalifa Bashier
    Rahman, Md Abed
    Goebel, Randy
    REVIEW OF SOCIONETWORK STRATEGIES, 2024, 18 (01): : 101 - 121
  • [40] Legal Information Retrieval and Entailment Using Transformer-based Approaches
    Mi-Young Kim
    Juliano Rabelo
    Housam Khalifa Bashier Babiker
    Md Abed Rahman
    Randy Goebel
    The Review of Socionetwork Strategies, 2024, 18 : 101 - 121