Harnessing pre-trained models for accurate prediction of protein-ligand binding affinity

被引:0
|
作者
Li, Jiashan [1 ]
Gong, Xinqi [1 ]
机构
[1] Renmin Univ China, Inst Math Sci, Sch Math, 59 Zhongguancun St, Beijing 100872, Peoples R China
来源
BMC BIOINFORMATICS | 2025年 / 26卷 / 01期
关键词
Binding affinity; Binding site prediction; Molecular representation; Molecular pre-training; SCORING FUNCTIONS; DOCKING; GLIDE;
D O I
10.1186/s12859-025-06064-w
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundThe binding between proteins and ligands plays a crucial role in the field of drug discovery. However, this area currently faces numerous challenges. On one hand, existing methods are constrained by the limited availability of labeled data, often performing inadequately when addressing complex protein-ligand interactions. On the other hand, many models struggle to effectively capture the flexible variations and relative spatial relationships between proteins and ligands. These issues not only significantly hinder the advancement of protein-ligand binding research but also adversely affect the accuracy and efficiency of drug discovery. Therefore, in response to these challenges, our study aims to enhance predictive capabilities through innovative approaches, providing more reliable support for drug discovery efforts.MethodsThis study leverages a pre-trained model with spatial awareness to enhance the prediction of protein-ligand binding affinity. By perturbing the structures of small molecules in a manner consistent with physical constraints and employing self-supervised tasks, we improve the representation of small molecule structures, allowing for better adaptation to affinity predictions. Meanwhile, our approach enables the identification of potential binding sites on proteins.ResultsOur model demonstrates a significantly higher correlation coefficient in binding affinity predictions. Extensive evaluation on the PDBBind v2019 refined set, CASF, and Merck FEP benchmarks confirms the model's robustness and strong generalization across diverse datasets. Additionally, the model achieves over 95% in classification ROC for binding site identification, underscoring its high accuracy in pinpointing protein-ligand interaction regions.ConclusionThis research presents a novel approach that not only enhances the accuracy of binding affinity predictions but also facilitates the identification of binding sites, showcasing the potential of pre-trained models in computational drug design. Data and code are available at https://github.com/MIALAB-RUC/SableBind.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] FABind: Fast and Accurate Protein-Ligand Binding
    Pei, Qizhi
    Gao, Kaiyuan
    Wu, Lijun
    Zhu, Jinhua
    Xia, Yingce
    Xie, Shufang
    Qin, Tao
    He, Kun
    Liu, Tie-Yan
    Yan, Rui
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] DLSSAffinity: protein-ligand binding affinity prediction via a deep learning model
    Wang, Huiwen
    Liu, Haoquan
    Ning, Shangbo
    Zeng, Chengwei
    Zhao, Yunjie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (17) : 10124 - 10133
  • [33] A Novel Method for Protein-Ligand Binding Affinity Prediction and the Related Descriptors Exploration
    Li, Shuyan
    Xi, Lili
    Wang, Chengqi
    Li, Jiazhong
    Lei, Beilei
    Liu, Huanxiang
    Yao, Xiaojun
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (06) : 900 - 909
  • [34] Structure-based protein-ligand interaction fingerprints for binding affinity prediction
    Wang, Debby D.
    Chan, Moon-Tong
    Yan, Hong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 6291 - 6300
  • [35] Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning
    Luo, Ding
    Liu, Dandan
    Qu, Xiaoyang
    Dong, Lina
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1892 - 1906
  • [36] SadNet: a novel multimodal fusion network for protein-ligand binding affinity prediction
    Hong, Qiansen
    Zhou, Guoqiang
    Qin, Yuke
    Shen, Jun
    Li, Haoran
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (16) : 12880 - 12891
  • [37] Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction
    Yi, Yiqiang
    Wan, Xu
    Zhao, Kangfei
    Le, Ou-Yang
    Zhao, Peilin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 4336 - 4347
  • [38] Hybrid Quantum Neural Network Approaches to Protein-Ligand Binding Affinity Prediction
    Avramouli, Maria
    Savvas, Ilias K.
    Vasilaki, Anna
    Tsipourlianos, Andreas
    Garani, Georgia
    MATHEMATICS, 2024, 12 (15)
  • [39] Binding Affinity Prediction for Protein-Ligand Complexes Based on β Contacts and B Factor
    Liu, Qian
    Kwoh, Chee Keong
    Li, Jinyan
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (11) : 3076 - 3085
  • [40] Improved prediction of protein-ligand binding affinity on not-so-big data
    Wang, Renxiao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251