Harnessing pre-trained models for accurate prediction of protein-ligand binding affinity

被引:0
|
作者
Li, Jiashan [1 ]
Gong, Xinqi [1 ]
机构
[1] Renmin Univ China, Inst Math Sci, Sch Math, 59 Zhongguancun St, Beijing 100872, Peoples R China
来源
BMC BIOINFORMATICS | 2025年 / 26卷 / 01期
关键词
Binding affinity; Binding site prediction; Molecular representation; Molecular pre-training; SCORING FUNCTIONS; DOCKING; GLIDE;
D O I
10.1186/s12859-025-06064-w
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundThe binding between proteins and ligands plays a crucial role in the field of drug discovery. However, this area currently faces numerous challenges. On one hand, existing methods are constrained by the limited availability of labeled data, often performing inadequately when addressing complex protein-ligand interactions. On the other hand, many models struggle to effectively capture the flexible variations and relative spatial relationships between proteins and ligands. These issues not only significantly hinder the advancement of protein-ligand binding research but also adversely affect the accuracy and efficiency of drug discovery. Therefore, in response to these challenges, our study aims to enhance predictive capabilities through innovative approaches, providing more reliable support for drug discovery efforts.MethodsThis study leverages a pre-trained model with spatial awareness to enhance the prediction of protein-ligand binding affinity. By perturbing the structures of small molecules in a manner consistent with physical constraints and employing self-supervised tasks, we improve the representation of small molecule structures, allowing for better adaptation to affinity predictions. Meanwhile, our approach enables the identification of potential binding sites on proteins.ResultsOur model demonstrates a significantly higher correlation coefficient in binding affinity predictions. Extensive evaluation on the PDBBind v2019 refined set, CASF, and Merck FEP benchmarks confirms the model's robustness and strong generalization across diverse datasets. Additionally, the model achieves over 95% in classification ROC for binding site identification, underscoring its high accuracy in pinpointing protein-ligand interaction regions.ConclusionThis research presents a novel approach that not only enhances the accuracy of binding affinity predictions but also facilitates the identification of binding sites, showcasing the potential of pre-trained models in computational drug design. Data and code are available at https://github.com/MIALAB-RUC/SableBind.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Prediction of protein-ligand binding affinity via deep learning models
    Wang, Huiwen
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [2] DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction
    Li, Yanjun
    Rezaei, Mohammad A.
    Li, Chenglong
    Li, Xiaolin
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 303 - 310
  • [3] Improving the prediction of protein-ligand binding affinity using deep learning models
    Rezaei, Mohammad
    Li, Yanjun
    Li, Xiaolin
    Li, Chenglong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [4] Prediction of protein-ligand binding affinity with deep learning
    Wang, Yuxiao
    Jiao, Qihong
    Wang, Jingxuan
    Cai, Xiaojun
    Zhao, Wei
    Cui, Xuefeng
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 5796 - 5806
  • [5] Ensembling methods for protein-ligand binding affinity prediction
    Cader, Jiffriya Mohamed Abdul
    Newton, M. A. Hakim
    Rahman, Julia
    Cader, Akmal Jahan Mohamed Abdul
    Sattar, Abdul
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Ensemble Neural Networks Scoring Functions for Accurate Binding Affinity Prediction of Protein-Ligand Complexes
    Ashtawy, Hossam M.
    Mahapatra, Nihar R.
    PATTERN RECOGNITION IN BIOINFORMATICS, PRIB 2014, 2014, 8626 : 129 - 130
  • [7] An Analysis of Proteochemometric and Conformal Prediction Machine Learning Protein-Ligand Binding Affinity Models
    Parks, Conor
    Gaieb, Zied
    Amaro, Rommie E.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
  • [8] Accurate prediction of binding modes and binding affinities of protein-ligand complexes
    Friesner, RA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1282 - U1283
  • [9] Protein-Ligand Binding Affinity Prediction Based on Deep Learning
    Lu, Yaoyao
    Liu, Junkai
    Jiang, Tengsheng
    Guan, Shixuan
    Wu, Hongjie
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 310 - 316
  • [10] Multi-task bioassay pre-training for protein-ligand binding affinity prediction
    Yan, Jiaxian
    Ye, Zhaofeng
    Yang, Ziyi
    Lu, Chengqiang
    Zhang, Shengyu
    Liu, Qi
    Qiu, Jiezhong
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)