An Unbiased Feature Estimation Network for Few-Shot Fine-Grained Image Classification

被引:0
|
作者
Wang, Jiale [1 ]
Lu, Jin [1 ]
Yang, Junpo [1 ]
Wang, Meijia [1 ]
Zhang, Weichuan [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Elect Informat & Artificial Intelligence, Xian 710000, Peoples R China
关键词
few-shot fine-grained image classification; data augmentation techniques; unbiased feature estimation network;
D O I
10.3390/s24237737
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Few-shot fine-grained image classification (FSFGIC) aims to classify subspecies with similar appearances under conditions of very limited data. In this paper, we observe an interesting phenomenon: different types of image data augmentation techniques have varying effects on the performance of FSFGIC methods. This indicates that there may be biases in the features extracted from the input images. The bias of the acquired feature may cause deviation in the calculation of similarity, which is particularly detrimental to FSFGIC tasks characterized by low inter-class variation and high intra-class variation, thus affecting the classification accuracy. To address the problems mentioned, we propose an unbiased feature estimation network. The designed network has the capability to significantly optimize the quality of the obtained feature representations and effectively reduce the feature bias from input images. Furthermore, our proposed architecture can be easily integrated into any contextual training mechanism. Extensive experiments on the FSFGIC tasks demonstrate the effectiveness of the proposed algorithm, showing a notable improvement in classification accuracy.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Attentive fine-grained recognition for cross-domain few-shot classification
    Sa, Liangbing
    Yu, Chongchong
    Ma, Xianqin
    Zhao, Xia
    Xie, Tao
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (06): : 4733 - 4746
  • [42] Dual adaptive local semantic alignment for few-shot fine-grained classification
    Song, Wei
    Yang, Kaili
    VISUAL COMPUTER, 2025, 41 (04): : 2923 - 2937
  • [43] Attentive fine-grained recognition for cross-domain few-shot classification
    Liangbing Sa
    Chongchong Yu
    Xianqin Ma
    Xia Zhao
    Tao Xie
    Neural Computing and Applications, 2022, 34 : 4733 - 4746
  • [44] Task-Oriented Channel Attention for Fine-Grained Few-Shot Classification
    Lee, Subeen
    Moon, Wonjun
    Seong, Hyun Seok
    Heo, Jae-Pil
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (03) : 1448 - 1463
  • [45] Task-specific Part Discovery for Fine-grained Few-shot Classification
    Wei, Yongxian
    Wei, Xiu-Shen
    MACHINE INTELLIGENCE RESEARCH, 2024, 21 (05) : 954 - 965
  • [46] Feature relocation network for fine-grained image classification
    Zhao, Peng
    Li, Yi
    Tang, Baowei
    Liu, Huiting
    Yao, Sheng
    NEURAL NETWORKS, 2023, 161 : 306 - 317
  • [47] Feature Augmentation Reconstruction Network for Few-Shot Image Classification
    Li, Zhen
    Wang, Lang
    An, Wenjuan
    Qi, Song
    Li, Xiaoxu
    Fei, Xuezhi
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1571 - 1578
  • [48] Dual Feature Reconstruction Network For Few-shot Image Classification
    Guo, Xiaowei
    Wu, Jijie
    Ren, Kai
    Song, Qi
    Li, Xiaoxu
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1579 - 1584
  • [49] Few-shot incremental learning with continual prototype calibration for remote sensing image fine-grained classification
    Zhu, Zining
    Wang, Peijin
    Diao, Wenhui
    Yang, Jinze
    Wang, Hongqi
    Sun, Xian
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 196 : 210 - 227
  • [50] Few-shot Named Entity Recognition Based on Fine-grained Prototypical Network
    Qi, Rong-Zhi
    Zhou, Jun-Yu
    Li, Shui-Yan
    Mao, Ying-Chi
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (10): : 4751 - 4765