Recent Advances on CO2 Electrochemical Reduction over Cu-Based Nanocrystals

被引:2
|
作者
Xue, Fei [1 ]
Lai, Xiaofei [2 ]
Xu, Yong [1 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion SINANO, I Lab, Suzhou 215123, Peoples R China
[2] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; electrochemical reduction; Cu nanocrystals; C2+ products; selectivity; PHOTOCATALYTIC REDUCTION; SELECTIVE FORMATION; SUBSURFACE OXYGEN; CARBON-DIOXIDE; SINGLE ATOMS; CATALYSTS; ELECTROREDUCTION; SURFACE; ELECTROCATALYSTS; ELECTRODES;
D O I
10.1002/cctc.202400590
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical CO2 reduction reaction (CO2RR) has recently attracted increasing attention of chemists for converting CO2 to value-added chemicals with the assistance of electrical energy. Over the past decades, substantial efforts have been devoted to CO2RR, however, this process still suffers the challenges of uphill energy barrier, high overpotential, and poor selectivity to target product due to the thermodynamic stability and kinetic inertness of CO2. Among those catalysts, Cu has been widely used for CO2RR to produce hydrocarbons with relatively high efficiency in spite of the poor selectivity to products. Therefore, it is highly desired to developed highly active and selective Cu-based catalysts for CO2RR. This mini-review will summarize the recent advances on CO2RR over Cu-based nanocrystals (NCs) with a special focus on the control of selectivity of product via surface modification. We hope this mini-review will motivate chemists to develop efficient catalysts for CO2RR, and also promote fundamental research on catalyst design in heterogeneous catalysis.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Progress in Cu-based electrocatalysts for electrochemical CO2 reduction to C2+ products
    Cui, Shaoying
    Li, Siqi
    Deng, Renzhi
    Wei, Lixin
    Yang, Shucheng
    Dai, Shiwei
    Wang, Fanan
    Liu, Song
    Huang, Yanqiang
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (10) : 2697 - 2716
  • [32] Recent Advances in Electrochemical CO2 Reduction on Indium-Based Catalysts
    Li, Jiayu
    Zhu, Minghui
    Han, Yi-Fan
    CHEMCATCHEM, 2021, 13 (02) : 514 - 531
  • [33] Electrochemical CO2 Reduction: Recent Advances and Current Trends
    Jones, John-Paul
    Prakash, G. K. Surya
    Olah, George A.
    ISRAEL JOURNAL OF CHEMISTRY, 2014, 54 (10) : 1451 - 1466
  • [34] Insights into selectivity modulation of electrochemical CO2 reduction reactions over Cu-based catalysts in terms of the key intermediates
    Gong, Yue
    Wang, Yanjie
    He, Tao
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2023, 66 (05): : 1828 - 1869
  • [35] CO Binding Energy is an Incomplete Descriptor of Cu-Based Catalysts for the Electrochemical CO2 Reduction Reaction
    Gao, Wenqiang
    Xu, Yifei
    Xiong, Haocheng
    Chang, Xiaoxia
    Lu, Qi
    Xu, Bingjun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (47)
  • [36] Recent Advances of Cu-Based Catalysts for NO Reduction by CO under O2-Containing Conditions
    Chen, Xiaoli
    Liu, Yaqi
    Liu, Yan
    Lian, Dianxing
    Chen, Mohaoyang
    Ji, Yongjun
    Xing, Liwen
    Wu, Ke
    Liu, Shaomian
    CATALYSTS, 2022, 12 (11)
  • [37] Recent advances in the photocatalytic CO2 reduction over semiconductors
    Mao, Jin
    Li, Kan
    Peng, Tianyou
    CATALYSIS SCIENCE & TECHNOLOGY, 2013, 3 (10) : 2481 - 2498
  • [38] An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction
    Zhao, Jian
    Xue, Song
    Barber, James
    Zhou, Yiwei
    Meng, Jie
    Ke, Xuebin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (09) : 4700 - 4734
  • [39] Size, alloy and interface effects on Cu-based catalysts for enhancing electrochemical reduction of CO2
    Guo, Fei
    He, Guanjie
    RESULTS IN ENGINEERING, 2023, 20
  • [40] Research progress on electrochemical CO2 reduction for Cu-based single-atom catalysts
    Li, Xiaojiao
    Yu, Xiaohu
    Yu, Qi
    SCIENCE CHINA-MATERIALS, 2023, 66 (10) : 3765 - 3781