A Novel Ultrasound-Based Radiomics Model for the Preoperative Prediction of Lymph Node Metastasis in Cervical Cancer

被引:1
|
作者
Yang, Xianyue [1 ]
Wang, Yan [2 ]
Zhang, Jingshu [1 ]
Yang, Jinyan [1 ]
Xu, Fangfang [1 ]
Liu, Yun [1 ]
Zhang, Chaoxue [1 ]
机构
[1] Anhui Med Univ, Affiliated Hosp 1, Dept Ultrasound, 218 Jixi Rd, Hefei 230022, Anhui, Peoples R China
[2] Anhui Med Univ, Affiliated Hosp 1, Dept Gynecol, Hefei, Peoples R China
来源
ULTRASOUND IN MEDICINE AND BIOLOGY | 2024年 / 50卷 / 12期
关键词
Cervical cancer; Lymph node metastasis; Ultrasound; Radiomics; Machine learning; LYMPHADENECTOMY; CT;
D O I
10.1016/j.ultrasmedbio.2024.07.013
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Objective: The purpose of this retrospective study was to establish a combined model based on ultrasound (US)radiomics and clinical factors to predict preoperative lymph node metastasis (LNM) in cervical cancer (CC) patients non-invasively. Methods: A total of 131 CC patients who had cervical lesions found by transvaginal sonography (TVS) from the First Affiliated Hospital of Anhui Medical University (Hefei, China) were retrospectively analyzed. The clinical independent predictors were selected using univariate and multivariate logistic regression analysis. US-radiomics features were extracted from US images; after selecting the most significant features by univariate analysis, Spearman's correlation analysis, and the least absolute shrinkage and selection operator (LASSO) algorithm; four machine-learning classification algorithms were used to build the US-radiomics model. Fivefold cross-validation was then used to test the performance of the model and compare the ability of the clinical, US-radiomics and combined models to predict LNM in CC patients. Results: Red blood cell, platelet and squamous cell carcinoma-associated antigen were independent clinical predictors of LNM (+) in CC patients. eXtreme Gradient Boosting performed the best among the four machine-learning classification algorithms. Fivefold cross-validation confirmed that eXtreme Gradient Boosting indeed performs the best, with average area under the curve values in the training and validation sets of 0.897 and 0.898. In the three prediction models, both the US-radiomics model and the combined model showed good predictive efficacy, with average area under the curve values in the training and validation sets of 0.897, 0.898 and 0.912, 0.905, respectively. Conclusion: US-radiomics features combined with clinical factors can preoperatively predict LNM in CC patients non-invasively.
引用
收藏
页码:1793 / 1799
页数:7
相关论文
共 50 条
  • [31] A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer
    Li, Menglei
    Zhang, Jing
    Dan, Yibo
    Yao, Yefeng
    Dai, Weixing
    Cai, Guoxiang
    Yang, Guang
    Tong, Tong
    JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
  • [32] Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer
    Huang, Yan-qi
    Liang, Chang-hong
    He, Lan
    Tian, Jie
    Liang, Cui-shan
    Chen, Xin
    Ma, Ze-lan
    Liu, Zai-yi
    JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (18) : 2157 - +
  • [33] Building CT Radiomics Based Nomogram for Preoperative Esophageal Cancer Patients Lymph Node Metastasis Prediction
    Shen, Chen
    Liu, Zhenyu
    Wang, Zhaoqi
    Guo, Jia
    Zhang, Hongkai
    Wang, Yingshu
    Qin, Jianjun
    Li, Hailiang
    Fang, Mengjie
    Tang, Zhenchao
    Li, Yin
    Qu, Jinrong
    Tian, Jie
    TRANSLATIONAL ONCOLOGY, 2018, 11 (03): : 815 - 824
  • [34] A Clinical-Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Gallbladder Cancer
    Liu, Xingyu
    Liang, Xiaoyuan
    Ruan, Lingxiang
    Yan, Sheng
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [36] A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer
    Menglei Li
    Jing Zhang
    Yibo Dan
    Yefeng Yao
    Weixing Dai
    Guoxiang Cai
    Guang Yang
    Tong Tong
    Journal of Translational Medicine, 18
  • [37] Preoperative prediction model of lymph node metastasis in the inguinal and femoral region based on radiomics and artificial intelligence
    Zhou, Haijian
    Zhao, Qian
    Xie, Qingsheng
    Peng, Yu
    Chen, Mengjie
    Huang, Zixin
    Lin, Zhongqiu
    Yao, Tingting
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2024, 34 (09) : 1437 - 1444
  • [38] A preoperative prediction of lymph node metastasis in early cervical squamous cell cancer with hematologica-based model
    Huang, Qiuyuan
    Li, Suyu
    Chen, Xiaoying
    Liu, Xiaohong
    Zhou, Guangrun
    Huang, Liyuan
    Li, Xiaoyan
    Lin, Kaiwu
    Zheng, Xiangqin
    JOURNAL OF CANCER, 2023, 14 (10): : 1763 - 1772
  • [39] Clinical-Radiomics Nomogram Based on Contrast-Enhanced Ultrasound for Preoperative Prediction of Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma
    Jiang, Liqing
    Zhang, Zijian
    Guo, Shiyan
    Zhao, Yongfeng
    Zhou, Ping
    CANCERS, 2023, 15 (05)
  • [40] Integration of ultrasound-based radiomics with clinical features for predicting cervical lymph node metastasis in postoperative patients with differentiated thyroid carcinoma
    Fan, Fengjing
    Li, Fei
    Wang, Yixuan
    Dai, Zhengjun
    Lin, Yuyang
    Liao, Lin
    Wang, Bei
    Sun, Hongjun
    ENDOCRINE, 2024, 84 (03) : 999 - 1012