Genuine multipartite entanglement in quantum optimization

被引:0
|
作者
Santra, Gopal Chandra [1 ,2 ,3 ]
Roy, Sudipto Singha [1 ,2 ,4 ]
Egger, Daniel J. [5 ]
Hauke, Philipp [1 ,2 ]
机构
[1] Pitaevskii BEC Center, Department of Physics, University of Trento, Via Sommarive 14, Trento,I-38123, Italy
[2] INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Trento,I-38123, Italy
[3] Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, Heidelberg,69120, Germany
[4] Department of Physics, Indian Institute of Technology (ISM) Dhanbad, Dhanbad,IN-826004, India
[5] IBM Quantum, IBM Research Europe-Zurich, Säumerstrasse 4, Rüschlikon,CH-8803, Switzerland
关键词
Approximation algorithms - Benchmarking - Optimization - Optimization algorithms - Quantum electronics - Quantum entanglement - Quantum optics;
D O I
10.1103/PhysRevA.111.022434
中图分类号
学科分类号
摘要
The ability to generate bipartite entanglement in quantum computing technologies is widely regarded as pivotal. However, the role of genuinely multipartite entanglement is much less understood than bipartite entanglement, particularly in the context of solving complicated optimization problems using quantum devices. It is thus crucial from both the algorithmic and hardware standpoints to understand whether multipartite entanglement contributes to achieving a good solution. Here we tackle this challenge by analyzing genuine multipartite entanglement - quantified by the generalized geometric measure - generated in Trotterized quantum annealing and the quantum approximate optimization algorithm. Using numerical benchmarks, we analyze its occurrence in the annealing schedule in detail. We observe a multipartite-entanglement barrier, and we explore how it correlates to the algorithm's success. We also prove how multipartite entanglement provides an upper bound to the overlap of the instantaneous state with an exact solution. Vice versa, the overlaps to the initial and final product states, which can be easily measured experimentally, offer upper bounds for the multipartite entanglement during the entire schedule. Our results help to shed light on how complex quantum correlations come to bear as a resource in quantum optimization. © 2025 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [41] Witnessing Genuine Multipartite Entanglement with Positive Maps
    Huber, Marcus
    Sengupta, Ritabrata
    PHYSICAL REVIEW LETTERS, 2014, 113 (10)
  • [42] Measures of genuine multipartite entanglement for graph states
    郭群群
    陈小余
    王赟赟
    Chinese Physics B, 2014, (05) : 100 - 105
  • [43] When Is a Genuine Multipartite Entanglement Measure Monogamous?
    Guo, Yu
    ENTROPY, 2022, 24 (03)
  • [44] Efficient and Robust Certification of Genuine Multipartite Entanglement in Noisy Quantum Error Correction Circuits
    Rodriguez-Blanco, Andrea
    Bermudez, Alejandro
    Mueller, Markus
    Shahandeh, Farid
    PRX QUANTUM, 2021, 2 (02):
  • [45] Genuine multipartite entanglement in quantum phase transitions (vol 73, art no 010305, 2006)
    de Oliveira, Thiago R.
    Rigolin, Gustavo
    de Oliveira, Marcos C.
    PHYSICAL REVIEW A, 2006, 74 (03):
  • [46] Genuine multipartite entanglement in quantum phase transitions (vol 73, art no 010305, 2006)
    de Oliveira, Thiago R.
    Rigolin, Gustavo
    de Oliveira, Marcos C.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [47] Genuine multipartite entanglement and quantum coherence in an electron-positron system: Relativistic covariance
    Petreca, Alexandra T.
    Cardoso, Gabriel
    Devecchi, Fernando P.
    Angelo, Renato M.
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [48] Genuine multipartite entanglement in the cluster-Ising model
    Giampaolo, S. M.
    Hiesmayr, B. C.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [49] Growth of genuine multipartite entanglement in random unitary circuits
    Bera, Anindita
    Roy, Sudipto Singha
    PHYSICAL REVIEW A, 2020, 102 (06)
  • [50] Certifying unknown genuine multipartite entanglement by neural networks
    Chen, Zhenyu
    Lin, Xiaodie
    Wei, Zhaohui
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (03)