A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection

被引:11
|
作者
Jin, Ming [1 ]
Koh, Huan Yee [2 ]
Wen, Qingsong [3 ]
Zambon, Daniele [4 ]
Alippi, Cesare [4 ,5 ]
Webb, Geoffrey I. [2 ]
King, Irwin [6 ]
Pan, Shirui [1 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
[2] Monash Univ, Dept Data Sci & AI, Clayton, Vic 3800, Australia
[3] Squirrel AI Learning, Bellevue, WA 98004 USA
[4] Univ Svizzera Italiana, Swiss AI Lab IDSIA, CH-6900 Lugano, Switzerland
[5] Politecn Milan, I-20133 Milan, Italy
[6] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
基金
芬兰科学院; 瑞士国家科学基金会; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
Time series analysis; Surveys; Task analysis; Graph neural networks; Forecasting; Imputation; Anomaly detection; Time series; graph neural networks; deep learning; forecasting; classification; imputation; anomaly detection; ATTENTION;
D O I
10.1109/TPAMI.2024.3443141
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. These approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and introduce mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.
引用
收藏
页码:10466 / 10485
页数:20
相关论文
共 50 条
  • [21] Time Series Clustering for Anomaly Detection Using Competitive Neural Networks
    Barreto, Guilherme A.
    Aguayo, Leonardo
    ADVANCES IN SELF-ORGANIZING MAPS, PROCEEDINGS, 2009, 5629 : 28 - +
  • [22] Generative adversarial networks for biomedical time series forecasting and imputation
    Festag, Sven
    Denzler, Joachim
    Spreckelsen, Cord
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 129
  • [23] Recurrent Neural Networks for Meteorological Time Series Imputation
    Flores, Anibal
    Tito, Hugo
    Centty, Deymor
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (03) : 482 - 487
  • [24] Survey of Application of Graph Neural Network in Anomaly Detection
    Chen, Jiale
    Chen, Xu
    Jing, Yongjun
    Wang, Shuyang
    Computer Engineering and Applications, 2024, 60 (13) : 51 - 65
  • [25] Graph neural networks for text classification: a survey
    Wang, Kunze
    Ding, Yihao
    Han, Soyeon Caren
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (08)
  • [26] Anomaly Detection in In-Vehicle Networks with Graph Neural Networks
    Ozdemir, Övgü
    Karagoz, Pinar
    Schmidt, Klaus Werner
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [27] A Deep Neural Network for Anomaly Detection and Forecasting for Multivariate Time Series in Smart City
    He, Junjie
    Dong, Min
    Bi, Sheng
    Zhao, Weijie
    Liao, Xutao
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 615 - 620
  • [28] An empirical survey of data augmentation for time series classification with neural networks
    Iwana, Brian Kenji
    Uchida, Seiichi
    PLOS ONE, 2021, 16 (07):
  • [29] REAL-TIME SYNCHRONIZATION IN NEURAL NETWORKS FOR MULTIVARIATE TIME SERIES ANOMALY DETECTION
    Abdulaal, Ahmed
    Lancewicki, Tomer
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3570 - 3574
  • [30] A SURVEY OF RESEARCH ON ANOMALY DETECTION FOR TIME SERIES
    Wu, Hu-Sheng
    2016 13TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2016, : 426 - 431