A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection

被引:11
|
作者
Jin, Ming [1 ]
Koh, Huan Yee [2 ]
Wen, Qingsong [3 ]
Zambon, Daniele [4 ]
Alippi, Cesare [4 ,5 ]
Webb, Geoffrey I. [2 ]
King, Irwin [6 ]
Pan, Shirui [1 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
[2] Monash Univ, Dept Data Sci & AI, Clayton, Vic 3800, Australia
[3] Squirrel AI Learning, Bellevue, WA 98004 USA
[4] Univ Svizzera Italiana, Swiss AI Lab IDSIA, CH-6900 Lugano, Switzerland
[5] Politecn Milan, I-20133 Milan, Italy
[6] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
基金
芬兰科学院; 瑞士国家科学基金会; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
Time series analysis; Surveys; Task analysis; Graph neural networks; Forecasting; Imputation; Anomaly detection; Time series; graph neural networks; deep learning; forecasting; classification; imputation; anomaly detection; ATTENTION;
D O I
10.1109/TPAMI.2024.3443141
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. These approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and introduce mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.
引用
收藏
页码:10466 / 10485
页数:20
相关论文
共 50 条
  • [1] Masked Graph Neural Networks for Unsupervised Anomaly Detection in Multivariate Time Series
    Xu, Kang
    Li, Yuan
    Li, Yixuan
    Xu, Liyan
    Li, Ruiyao
    Dong, Zhenjiang
    SENSORS, 2023, 23 (17)
  • [2] Unsupervised anomaly detection and imputation in noisy time series data for enhancing load forecasting
    Dissem, Maher
    Amayri, Manar
    APPLIED INTELLIGENCE, 2025, 55 (01)
  • [3] Time-series Imputation using Graph Neural Networks and Denoising Autoencoders
    Wieser, Raymond
    Fan, Yangxin
    Yu, Xuanji
    Braid, Jennifer
    Shaton, Avishai
    Hoffman, Adam
    Spurgeon, Ben
    Gibbons, Daniel
    Bruckman, Laura S.
    Wu, Yinghui
    French, Roger H.
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [4] Adversarial Graph Neural Network for Multivariate Time Series Anomaly Detection
    Zheng, Bolong
    Ming, Lingfeng
    Zeng, Kai
    Zhou, Mengtao
    Zhang, Xinyong
    Ye, Tao
    Yang, Bin
    Zhou, Xiaofang
    Jensen, Christian S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 7612 - 7626
  • [5] Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks
    Wu, Zonghan
    Pan, Shirui
    Long, Guodong
    Jiang, Jing
    Chang, Xiaojun
    Zhang, Chengqi
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 753 - 763
  • [6] GCTGNN: A forecasting method for time series based on graph neural networks and graph clustering
    Liu, Xin
    Meng, Yapeng
    Chen, Feng
    Qiao, Dengjian
    Wu, Fan
    NEUROCOMPUTING, 2025, 626
  • [7] Hybrid graph transformer networks for multivariate time series anomaly detection
    Rong Gao
    Wei He
    Lingyu Yan
    Donghua Liu
    Yonghong Yu
    Zhiwei Ye
    The Journal of Supercomputing, 2024, 80 : 642 - 669
  • [8] Hybrid graph transformer networks for multivariate time series anomaly detection
    Gao, Rong
    He, Wei
    Yan, Lingyu
    Liu, Donghua
    Yu, Yonghong
    Ye, Zhiwei
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (01): : 642 - 669
  • [9] From anomaly detection to classification with graph attention and transformer for multivariate time series
    Wang, Chaoyang
    Liu, Guangyu
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [10] Anomaly detection with convolutional Graph Neural Networks
    Atkinson, Oliver
    Bhardwaj, Akanksha
    Englert, Christoph
    Ngairangbam, Vishal S.
    Spannowsky, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)