Multiferroic Tuning of Magnetic Anisotropy in MnTe2 Monolayer with Li/Na Adsorption

被引:0
|
作者
Luo, Lijing [1 ]
Sun, Qilong [1 ]
Jin, Cui [1 ]
Li, Mengmeng [1 ]
Tan, Ruishan [1 ]
Dai, Ying [2 ]
机构
[1] Shandong Jianzhu Univ, Sch Sci, Jinan 250101, Peoples R China
[2] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 49期
基金
中国国家自然科学基金;
关键词
INTRINSIC FERROMAGNETISM; WAALS; 1ST-PRINCIPLES;
D O I
10.1021/acs.jpclett.4c02816
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional (2D) magnetic materials with tunable magnetic anisotropy energy (MAE) are of great scientific interest and hold immense promise for ultracompact spintronic devices with lower energy consumption and higher storage density. Here, we demonstrate a practical approach for manipulating MAE in layered MnTe2 through the alkali metal adsorption and ferroelectric (FE) polarization effect. Our results reveal colossal MAE values of up to -12.428 erg/cm2 under Li/Na adsorption, accompanied by a spin reorientation and enhanced ferromagnetic (FM) coupling stability. Their negative MAE show a linear enhancement in response to the external strain. Moreover, we find that the FE In2Se3 substrate enhances the perpendicular magnetic anisotropy (PMA) of MnTe2 up to 2.318 erg/cm2 depending on the polarization direction. Ferroelectric switching at In2Se3-based interfaces could also induce significant MAE changes with the value of 3.838 erg/cm2. We elucidate that the underlying mechanisms for these modulations are primarily attributed to alterations in the electron occupancy of interfacial Te1-derived p y and p z states, which affect their competitive spin-orbit coupling (SOC) strengths. These findings highlight the potential of interfacial engineering in tailoring magnetism in 2D materials, opening exciting possibilities for the development of advanced spintronic devices with enhanced functionality.
引用
收藏
页码:12181 / 12187
页数:7
相关论文
共 50 条
  • [41] First-Principles Studies of the Magnetic Anisotropy of Monolayer VS2
    Yunliang Yue
    Journal of Superconductivity and Novel Magnetism, 2017, 30 : 1201 - 1206
  • [42] Nontrivial temperature dependence of magnetic anisotropy in multiferroic Ba2MnGe2O7
    Hasegawa, Shunsuke
    Hayashida, Shohei
    Asai, Shinichiro
    Matsuura, Masato
    Igor, Zaliznyak
    Masuda, Takatsugu
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [43] Ferroelectric control of magnetic anisotropy in multiferroic heterostructure EuSn2As2/In2Se3
    Wang, Bing
    Bai, Yihang
    Wang, Chongze
    Liu, Shuyuan
    Yao, Shichang
    Jia, Yu
    Cho, J.
    PHYSICAL REVIEW B, 2024, 110 (09)
  • [44] Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field
    Smolenski, T.
    Goryca, M.
    Koperski, M.
    Faugeras, C.
    Kazimierczuk, T.
    Bogucki, A.
    Nogajewski, K.
    Kossacki, P.
    Potemski, M.
    PHYSICAL REVIEW X, 2016, 6 (02):
  • [45] Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage
    Zhang, Cheng
    Tang, Shaolong
    Deng, Mingsen
    Du, Youwei
    CHINESE PHYSICS B, 2018, 27 (06)
  • [46] Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage
    张诚
    唐少龙
    邓明森
    都有为
    Chinese Physics B, 2018, 27 (06) : 322 - 330
  • [47] Tuning the magnetic properties of the multiferroic LuFe2O4 by moderate thermal treatment
    Patankar, S.
    Pandey, S. K.
    Reddy, V. R.
    Gupta, A.
    Banerjee, A.
    Chaddah, P.
    EPL, 2010, 90 (05)
  • [48] Modulation of magnetic phase transition and magnetic anisotropy in CrSe2 monolayer under biaxial strain
    Lei, Bocheng
    Guo, Sijia
    Yu, Xiansheng
    Huang, Yineng
    Zhang, Lili
    Zhou, Jian
    JOURNAL OF APPLIED PHYSICS, 2025, 137 (09)
  • [49] Magnetic monolayer Li2N: Density Functional Theory calculations
    Rahman, Gul
    Rahman, Altaf Ur
    Kanwal, Saima
    Kratzer, Peter
    EPL, 2017, 119 (05)
  • [50] Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer
    Didi Zhao
    Chenggong Zhang
    Changwen Zhang
    Weixiao Ji
    Shengshi Li
    Peiji Wang
    Journal of Semiconductors, 2022, (05) : 74 - 82