Research on multi-path quadratic convolutional neural network-based bearing fault diagnosis

被引:0
|
作者
Ji, Yingying [1 ,2 ]
Gao, Jun [1 ]
Shao, Xing [1 ]
Wang, Cuixiang [1 ]
机构
[1] Yancheng Inst Technol, Sch Informat Engn, Yancheng 224051, Peoples R China
[2] Yancheng Inst Technol, Sch Mech Engn, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
quadratic convolution; attention mechanism; dilated convolution; bearing fault diagnosis; THRESHOLD;
D O I
10.1784/insi.2024.66.12.758
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In real-world complex situations, high levels of noise from the surroundings and other component resonances frequently distort collected vibration signals, giving the collected data non-linear features. This research presents a multi-path quadratic convolutional neural network (MPQCNN) for bearing fault diagnosis in response to the issue of the low generalisation performance of traditional deep learning-based bearing fault diagnosis methods and their limited diagnostic capabilities in noisy situations. The proposed MPQCNN combines an attention mechanism and a residual structure, utilising the potent feature representation capability of quadratic neurons to process the input in noisy situations. By using dilated convolutions with different dilation rates, the receptive field of the MPQCNN is expanded and the multi-scale features obtained are fused to enhance the fault diagnosis capability. Moreover, a dynamic balance adaptive threshold residual block is used to enhance the robustness of the model. To perform pertinent experiments, the show that the suggested approach has strong noise immunity. The diagnostic accuracy of the MPQCNN for the CWRU and Southeast University bearing datasets can reach up to 100% when the signal-to-noise ratio (SNR) is 6.
引用
收藏
页码:758 / 766
页数:9
相关论文
共 50 条
  • [31] A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis
    Zhu, Zhiyu
    Peng, Gaoliang
    Chen, Yuanhang
    Gao, Huijun
    NEUROCOMPUTING, 2019, 323 : 62 - 75
  • [32] Fault Diagnosis Method for Bearing Based on Attention Mechanism and Multi-Scale Convolutional Neural Network
    Shen, Qimin
    Zhang, Zengqiang
    IEEE ACCESS, 2024, 12 : 12940 - 12952
  • [33] Bearing Fault Diagnosis Method Based on Multi-sensor Feature Fusion Convolutional Neural Network
    Zhong, Xiaoyong
    Song, Xiangjin
    Wang, Zhaowei
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT IV, 2022, 13458 : 138 - 149
  • [34] Aeroengine Bearing Fault Diagnosis Based on Convolutional Neural Network for Multi-sensor Information Fusion
    Yang J.
    Wan A.
    Wang J.
    Shan T.
    Miao X.
    Li K.
    Zuo Q.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42 (13): : 4933 - 4941
  • [35] A multi-scale collaborative fusion residual neural network-based approach for bearing fault diagnosis
    Qian, Chen
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [36] Research on a Bearing Fault Enhancement Diagnosis Method with Convolutional Neural Network Based on Adaptive Stochastic Resonance
    Wang, Chen
    Qiao, Zijian
    Huang, Zhangjun
    Xu, Junchen
    Fang, Shitong
    Zhang, Cailiang
    Liu, Jinjun
    Zhu, Ronghua
    Lai, Zhihui
    SENSORS, 2022, 22 (22)
  • [37] Research on fault diagnosis of rolling bearing based on improved convolutional neural network with sparrow search algorithm
    Wan, Min
    Xiao, Yujie
    Zhang, Jingran
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (04):
  • [38] Multi-path convolutional neural network in fundus segmentation of blood vessels
    Tian, Chun
    Fang, Tao
    Fan, Yingle
    Wu, Wei
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (02) : 583 - 595
  • [39] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [40] Bearing Intelligent Fault Diagnosis Based on Wavelet Transform and Convolutional Neural Network
    Guo, Junfeng
    Liu, Xingyu
    Li, Shuangxue
    Wang, Zhiming
    SHOCK AND VIBRATION, 2020, 2020