Research on multi-path quadratic convolutional neural network-based bearing fault diagnosis

被引:0
|
作者
Ji, Yingying [1 ,2 ]
Gao, Jun [1 ]
Shao, Xing [1 ]
Wang, Cuixiang [1 ]
机构
[1] Yancheng Inst Technol, Sch Informat Engn, Yancheng 224051, Peoples R China
[2] Yancheng Inst Technol, Sch Mech Engn, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
quadratic convolution; attention mechanism; dilated convolution; bearing fault diagnosis; THRESHOLD;
D O I
10.1784/insi.2024.66.12.758
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In real-world complex situations, high levels of noise from the surroundings and other component resonances frequently distort collected vibration signals, giving the collected data non-linear features. This research presents a multi-path quadratic convolutional neural network (MPQCNN) for bearing fault diagnosis in response to the issue of the low generalisation performance of traditional deep learning-based bearing fault diagnosis methods and their limited diagnostic capabilities in noisy situations. The proposed MPQCNN combines an attention mechanism and a residual structure, utilising the potent feature representation capability of quadratic neurons to process the input in noisy situations. By using dilated convolutions with different dilation rates, the receptive field of the MPQCNN is expanded and the multi-scale features obtained are fused to enhance the fault diagnosis capability. Moreover, a dynamic balance adaptive threshold residual block is used to enhance the robustness of the model. To perform pertinent experiments, the show that the suggested approach has strong noise immunity. The diagnostic accuracy of the MPQCNN for the CWRU and Southeast University bearing datasets can reach up to 100% when the signal-to-noise ratio (SNR) is 6.
引用
收藏
页码:758 / 766
页数:9
相关论文
共 50 条
  • [1] Research on Multi-Path Lightweight Convolutional Neural Network
    Zhao, Lixin
    Bai, Yu
    An, Shengbiao
    Computer Engineering and Applications, 2023, 59 (06) : 134 - 145
  • [2] Research on a Bearing Fault Diagnosis Algorithm Based on Convolutional Neural Network
    Bu, Yang
    Dai, Yuquan
    Wang, Ziyu
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 : 16 - 17
  • [3] Interpretable quadratic convolutional residual neural network for bearing fault diagnosis
    Luo, Zhiyong
    Pan, Shuping
    Dong, Xin
    Zhang, Xin
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2025, 47 (04)
  • [4] Convolutional Neural Network Based Bearing Fault Diagnosis
    Duy-Tang Hoang
    Kang, Hee-Jun
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 105 - 111
  • [5] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Zhang, Xiaochen
    Li, Hanwen
    Meng, Weiying
    Liu, Yaofeng
    Zhou, Peng
    He, Cai
    Zhao, Qingbo
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (10)
  • [6] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Xiaochen Zhang
    Hanwen Li
    Weiying Meng
    Yaofeng Liu
    Peng Zhou
    Cai He
    Qingbo Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [7] Multi-scale quadratic convolutional neural network for bearing fault diagnosis based on multi-sensor data fusion
    Ji, Yingying
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    NONLINEAR DYNAMICS, 2025, : 14223 - 14244
  • [8] A lightweight diagnosis method for gear fault based on multi-path convolutional neural networks with attention mechanism
    Chen, Tianming
    Wang, Manyi
    Jiang, Yilin
    Yao, Jiachen
    Li, Ming
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [9] Multi-attribute quantitative bearing fault diagnosis based on convolutional neural network
    Zhang, Shixin
    Lv, Qin
    Zhang, Shenlin
    Shan, Jianhua
    COGNITIVE COMPUTATION AND SYSTEMS, 2021, 3 (04) : 287 - 296
  • [10] Research on Bearing Fault Diagnosis Methods Based on Various Convolutional Neural Network Architectures
    Xu, Mingshen
    Guan, Po
    Shi, Xinyu
    Jiang, Runji
    Tian, Jingjia
    Geng, Jianghai
    Xiong, Gaoxian
    IEEE ACCESS, 2025, 13 : 44445 - 44465