Minimizing Response Delay in UAV-Assisted Mobile Edge Computing by Joint UAV Deployment and Computation Offloading

被引:0
|
作者
Zhang, Jianshan [1 ]
Luo, Haibo [1 ]
Chen, Xing [2 ]
Shen, Hong [3 ]
Guo, Longkun [4 ]
机构
[1] Minjiang Univ, Sch Comp & Big Data, Fujian Prov Key Lab Informat Proc & Intelligent Co, Fuzhou 350121, Peoples R China
[2] Fuzhou Univ, Minist Educ, Engn Res Ctr Big Data Intelligence, Coll Comp & Data Sci,Fujian Key Lab Network Comp &, Fuzhou 350118, Peoples R China
[3] Cent Queensland Univ, Sch Engn & Technol, Brisbane, Qld 4000, Australia
[4] Fuzhou Univ, Sch Math & Stat, Fuzhou 350118, Peoples R China
关键词
Autonomous aerial vehicles; Optimization; Mobile handsets; Servers; Delays; Relays; Heuristic algorithms; Multi-access edge computing; Computer architecture; Cloud computing; Block coordinate descent; computation offloading; mobile edge computing; unmanned aerial vehicle deployment; TASK; OPTIMIZATION; TIME;
D O I
10.1109/TCC.2024.3478172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a promising technique for offloading computation tasks from mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) utilizes UAVs as computational resources. A popular method for enhancing the quality of service (QoS) of UAV-assisted MEC systems is to jointly optimize UAV deployment and computation task offloading. This imposes the challenge of dynamically adjusting UAV deployment and computation offloading to accommodate the changing positions and computational requirements of mobile devices. Due to the real-time requirements of MEC computation tasks, finding an efficient joint optimization approach is imperative. This paper proposes an algorithm aimed at minimizing the average response delay in a UAV-assisted MEC system. The approach revolves around the joint optimization of UAV deployment and computation offloading through convex optimization. We break down the problem into three sub-problems: UAV deployment, Ground Device (GD) access, and computation tasks offloading, which we address using the block coordinate descent algorithm. Observing the $NP$NP-hardness nature of the original problem, we present near-optimal solutions to the decomposed sub-problems. Simulation results demonstrate that our approach can generate a joint optimization solution within seconds and diminish the average response delay compared to state-of-the-art algorithms and other advanced algorithms, with improvements ranging from 4.70% to 42.94%.
引用
收藏
页码:1372 / 1386
页数:15
相关论文
共 50 条
  • [21] Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach
    Yunpeng Wang
    Weiwei Fang
    Yi Ding
    Naixue Xiong
    Wireless Networks, 2021, 27 : 2991 - 3006
  • [22] Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach
    Wang, Yunpeng
    Fang, Weiwei
    Ding, Yi
    Xiong, Naixue
    WIRELESS NETWORKS, 2021, 27 (04) : 2991 - 3006
  • [23] Task Offloading Strategy for UAV-Assisted Mobile Edge Computing with Covert Transmission
    Hu, Zhijuan
    Zhou, Dongsheng
    Shen, Chao
    Wang, Tingting
    Liu, Liqiang
    ELECTRONICS, 2025, 14 (03):
  • [24] UAV-assisted cooperative offloading energy efficiency system for mobile edge computing
    XueYong Yu
    WenJin Niu
    Ye Zhu
    HongBo Zhu
    Digital Communications and Networks, 2024, 10 (01) : 16 - 24
  • [25] UAV-assisted cooperative offloading energy efficiency system for mobile edge computing
    Yu, Xue-Yong
    Niu, Wen-Jin
    Zhu, Ye
    Zhu, Hong-Bo
    DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (01) : 16 - 24
  • [26] Joint deployment and trajectory optimization in UAV-assisted vehicular edge computing networks
    Wu, Zhiwei
    Yang, Zilin
    Yang, Chao
    Lin, Jixu
    Liu, Yi
    Chen, Xin
    JOURNAL OF COMMUNICATIONS AND NETWORKS, 2022, 24 (01) : 47 - 58
  • [27] Task Offloading in UAV-Assisted Vehicular Edge Computing Networks
    Zhang, Wanjun
    Wang, Aimin
    He, Long
    Sun, Zemin
    Li, Jiahui
    Sun, Geng
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT VI, 2024, 14492 : 382 - 397
  • [28] UAV-Assisted Task Offloading in Vehicular Edge Computing Networks
    Dai, Xingxia
    Xiao, Zhu
    Jiang, Hongbo
    Lui, John C. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (04) : 2520 - 2534
  • [29] Task Offloading and Energy Optimization in Hybrid UAV-Assisted Mobile Edge Computing Systems
    Gao, Ang
    Zhang, Shuai
    Zhang, Qian
    Hu, Yansu
    Liu, Shuhua
    Liang, Wei
    Ng, Soon Xin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 12052 - 12066
  • [30] Joint Communication and Computation Resource Scheduling of a UAV-Assisted Mobile Edge Computing System for Platooning Vehicles
    Liu, Yang
    Zhou, Jianshan
    Tian, Daxin
    Sheng, Zhengguo
    Duan, Xuting
    Qu, Guixian
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 8435 - 8450