Gradient Harmonization in Unsupervised Domain Adaptation

被引:1
|
作者
Huang, Fuxiang [1 ]
Song, Suqi [1 ]
Zhang, Lei [1 ]
机构
[1] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
基金
国家重点研发计划;
关键词
Task analysis; Optimization; Training; Adaptation models; Computational modeling; Generators; Transformers; Unsupervised domain adaptation; gradient harmonization; transfer learning; image classification;
D O I
10.1109/TPAMI.2024.3438154
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) intends to transfer knowledge from a labeled source domain to an unlabeled target domain. Many current methods focus on learning feature representations that are both discriminative for classification and invariant across domains by simultaneously optimizing domain alignment and classification tasks. However, these methods often overlook a crucial challenge: the inherent conflict between these two tasks during gradient-based optimization. In this paper, we delve into this issue and introduce two effective solutions known as Gradient Harmonization, including GH and GH++, to mitigate the conflict between domain alignment and classification tasks. GH operates by altering the gradient angle between different tasks from an obtuse angle to an acute angle, thus resolving the conflict and trade-offing the two tasks in a coordinated manner. Yet, this would cause both tasks to deviate from their original optimization directions. We thus further propose an improved version, GH++, which adjusts the gradient angle between tasks from an obtuse angle to a vertical angle. This not only eliminates the conflict but also minimizes deviation from the original gradient directions. Finally, for optimization convenience and efficiency, we evolve the gradient harmonization strategies into a dynamically weighted loss function using an integral operator on the harmonized gradient. Notably, GH/GH++ are orthogonal to UDA and can be seamlessly integrated into most existing UDA models. Theoretical insights and experimental analyses demonstrate that the proposed approaches not only enhance popular UDA baselines but also improve recent state-of-the-art models.
引用
收藏
页码:10319 / 10336
页数:18
相关论文
共 50 条
  • [31] Deep Unsupervised Convolutional Domain Adaptation
    Zhuo, Junbao
    Wang, Shuhui
    Zhang, Weigang
    Huang, Qingming
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 261 - 269
  • [32] Unsupervised Domain Adaptation with Similarity Learning
    Pinheiro, Pedro O.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8004 - 8013
  • [33] On a regularization of unsupervised domain adaptation in RKHS
    Gizewski, Elke R.
    Mayer, Lukas
    Moser, Bernhard A.
    Nguyen, Duc Hoan
    Pereverzyev, Sergiy, Jr.
    Pereverzyev, Sergei V.
    Shepeleva, Natalia
    Zellinger, Werner
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 57 : 201 - 227
  • [34] Unsupervised Evaluation of Lidar Domain Adaptation
    Hubschneider, Christian
    Roesler, Simon
    Zoellner, J. Marius
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [35] A Survey of Unsupervised Deep Domain Adaptation
    Wilson, Garrett
    Cook, Diane J.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2020, 11 (05)
  • [36] MODEL UNCERTAINTY FOR UNSUPERVISED DOMAIN ADAPTATION
    Lee, JoonHo
    Lee, Gyemin
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1841 - 1845
  • [37] UNSUPERVISED DOMAIN ADAPTATION WITH COPULA MODELS
    Tran, Cuong D.
    Rudovic, Ognjen
    Pavlovic, Vladimir
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [38] Simplified Neural Unsupervised Domain Adaptation
    Miller, Timothy
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 414 - 419
  • [39] Adversarial Robustness for Unsupervised Domain Adaptation
    Awais, Muhammad
    Zhou, Fengwei
    Xu, Hang
    Hong, Lanqing
    Luo, Ping
    Bae, Sung-Ho
    Li, Zhenguo
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8548 - 8557
  • [40] Cross Domain Mean Approximation for Unsupervised Domain Adaptation
    Zang, Shaofei
    Cheng, Yuhu
    Wang, Xuesong
    Yu, Qiang
    Xie, Guo-Sen
    IEEE ACCESS, 2020, 8 : 139052 - 139069