Numerical analysis of vortex dynamics in hyperbolic funnels using computational fluid dynamics

被引:1
|
作者
Donepudi, Teja [1 ]
van de Griend, Maarten [2 ]
Agostinho, Luewton L. F. [3 ,4 ]
de Kroon, Esther J. [3 ]
Klymenko, Roman [4 ]
Pecnik, Rene [1 ]
Woisetschlaeger, Jakob [5 ]
Fuchs, Elmar C. [4 ,6 ]
机构
[1] Delft Univ Technol, Proc & Energy Lab, Leeghwaterstr 39, NL-2628 CB Delft, Netherlands
[2] Ctr Expertise Water Technol, Leeuwarden, Netherlands
[3] NHL Stenden Univ Appl Sci, Water Technol Res Grp, Rengerslaan 8-10, NL-8917 DD Leeuwarden, Netherlands
[4] European Ctr Excellence Sustainable Water Technol, Wetsus, NL-8911 MA Leeuwarden, Netherlands
[5] Graz Univ Technol, Inst Thermal Turbomachinery & Machine Dynam, Working Grp Metrol Laser Opt Metrol, Inffeldgasse 25A, A-8010 Graz, Austria
[6] Univ Twente, Fac Sci & Technol TNW, Opt Sci Grp, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands
关键词
VORTICES;
D O I
10.1063/5.0222216
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Experimental investigations into the characterization of vortices in hyperbolic funnels have shown efficient aeration properties. Certain regimes of vortices have been observed to exhibit high gas dissolution rates. This phenomenon has prompted inquiries into the underlying physical mechanisms at both micro and macroscopic scales. The present study employs computational fluid dynamics to numerically analyze the flow field organization inside these vortices, aiming to elucidate the observed high gas transfer rates. Transient simulations are performed on a three-dimensional radially structured hexahedral mesh, utilizing a multiphase Euler-Euler approach-based volume of fluid method for modeling, along with shear stress transport turbulence modeling based on k-omega equations with curvature correction. The evaluation of the two vortex regimes was conducted in terms of hydraulic retention time, water volume in the reactor, air-water interfacial area, and bulk mixing. Instabilities resembling Taylor vortices observed in Taylor-Couette flow systems emerge in the secondary flow field of these vortical structures, facilitating turbulent mixing. A qualitative analysis of the strength of these instabilities in terms of average vorticity per unit mass of water explains the high gas transfer efficiency. Despite high gas transfer rates, water exiting the funnel remains undersaturated under given operating conditions due to the short hydraulic retention time.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] ANALYSIS OF DECELERATORS IN MOTION USING COMPUTATIONAL FLUID-DYNAMICS
    STEEVES, EC
    AIAA 10TH AERODYNAMIC DECELERATOR SYSTEMS TECHNOLOGY CONFERENCE: A COLLECTION OF TECHNICAL PAPERS, 1989, : 269 - 278
  • [32] Flow Analysis of Intake Manifold Using Computational Fluid Dynamics
    Azam, Syafiqah Ruqaiyah Saiful
    Abidin, Shaiful Fadzil Zainal
    Ishak, Izuan Amin
    Khalid, Amir
    Mustaffa, Norrizal
    Taib, Ishkrizat
    Sukiman, Safra Liyana
    Darlis, Nofrizalidris
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2023, 15 (01): : 88 - 95
  • [33] Maxillary sinus aeration analysis using computational fluid dynamics
    Dmitry Tretiakow
    Krzysztof Tesch
    Karolina Markiet
    Andrzej Skorek
    Scientific Reports, 12
  • [34] Analysis of conductive olfactory dysfunction using computational fluid dynamics
    Asama, Youji
    Furutani, Akiko
    Fujioka, Masato
    Ozawa, Hiroyuki
    Takei, Satoshi
    Shibata, Shigenobu
    Ogawa, Kaoru
    PLOS ONE, 2022, 17 (01):
  • [35] Analysis of S-4180 using Computational Fluid Dynamics
    Patel, Vidhiksha
    Bhise, Dipali
    Xavier, Johney
    Kumavat, Bharat
    Lode, Rakesh
    Pavaskar, Karthik
    Ramachandran, Divya
    2017 IEEE INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND CONTROL (ICAC3), 2017,
  • [36] Analysis of Velopharyngeal Functions Using Computational Fluid Dynamics Simulations
    Huang, Hanyao
    Cheng, Xu
    Wang, Yang
    Huang, Dantong
    Wei, Yuhao
    Yin, Heng
    Shi, Bing
    Li, Jingtao
    ANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY, 2019, 128 (08): : 742 - 748
  • [37] Aerodynamic analysis of a bus bodywork using Computational Fluid Dynamics
    Santana Reyes, Santiago Amaury
    Morales Leslie, Jose Felix
    de la Rosa Andino, Alain Ariel
    Alvarez Cabrales, Alexis
    REVISTA CUBANA DE INGENIERIA, 2020, 11 (01): : 57 - 65
  • [38] Analysis of drafting effects in swimming using computational fluid dynamics
    Silva, Antonio Jose
    Rouboa, Abel
    Moreira, Antonio
    Reis, Victor Machado
    Alves, Francisco
    Vilas-Boas, Joao Paulo
    Marinho, Daniel Almeida
    JOURNAL OF SPORTS SCIENCE AND MEDICINE, 2008, 7 (01) : 60 - 66
  • [39] Analysis of Hybrid Air Vehicles Using Computational Fluid Dynamics
    Carrion, M.
    Steijl, R.
    Barakos, G. N.
    Stewart, D.
    JOURNAL OF AIRCRAFT, 2016, 53 (04): : 1001 - 1012
  • [40] Maxillary sinus aeration analysis using computational fluid dynamics
    Tretiakow, Dmitry
    Tesch, Krzysztof
    Markiet, Karolina
    Skorek, Andrzej
    SCIENTIFIC REPORTS, 2022, 12 (01)